Answer on Question #52228 - Math - Multivariable Calculus

If
$$f(x, y) = 4x^3 - 3y^2$$
, find f_x

Solution

Let's compute the partial derivative of function $f(x, y) = 4x^3 - 3y^2$ with respect to x, with y held constant:

$$\begin{split} f_x &= \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \left(4x^3 - 3y^2 \right) = \frac{\partial}{\partial x} \left(4x^3 \right) + \frac{\partial}{\partial x} \left(-3y^2 \right) = 4 \cdot 3x^2 + 0 = 12x^2 \\ f_x &= \frac{\partial f}{\partial x} = 12x^2 \,. \end{split}$$

The rules work the same way here as it does with functions of one variable:
$$\frac{\partial}{\partial x}(g(x,y)-h(x,y)) = \frac{\partial g(x,y)}{\partial x} - \frac{\partial h(x,y)}{\partial x};$$

$$\frac{\partial}{\partial x}(Ar(x)) = A\frac{\partial r(x)}{\partial x}$$
, where A is constant with respect to x ;

$$\frac{\partial}{\partial x}(x^n) = nx^{n-1}$$
, where n is integer.

$$\frac{\partial}{\partial x}(s(y)) = 0$$
, where $s(y)$ is function of y .

Answer: $f_x = 12x^2$.