Answer on Question \#52228 - Math - Multivariable Calculus

If $f(x, y)=4 x^{3}-3 y^{2}$, find f_{x}

Solution

Let's compute the partial derivative of function $f(x, y)=4 x^{3}-3 y^{2}$ with respect to x, with y held constant:
$f_{x}=\frac{\partial f}{\partial x}=\frac{\partial}{\partial x}\left(4 x^{3}-3 y^{2}\right)=\frac{\partial}{\partial x}\left(4 x^{3}\right)+\frac{\partial}{\partial x}\left(-3 y^{2}\right)=4 \cdot 3 x^{2}+0=12 x^{2}$
$f_{x}=\frac{\partial f}{\partial x}=12 x^{2}$.
The rules work the same way here as it does with functions of one variable:
$\frac{\partial}{\partial x}(g(x, y)-h(x, y))=\frac{\partial g(x, y)}{\partial x}-\frac{\partial h(x, y)}{\partial x}$;
$\frac{\partial}{\partial x}(A r(x))=A \frac{\partial r(x)}{\partial x}$, where A is constant with respect to x;
$\frac{\partial}{\partial x}\left(x^{n}\right)=n x^{n-1}$, where n is integer.
$\frac{\partial}{\partial x}(s(y))=0$, where $s(y)$ is function of y.
Answer: $f_{x}=12 x^{2}$.

