Answer on Question \#52224 - Math - Multivariable Calculus

$f(x, y)=4 x^{3}-3 y^{2}$, find f_{x}.

Solution:

Let's compute the partial derivative of function $f(x, y)$ with respect to x, with y held constant:

$$
\begin{aligned}
f_{x}=\frac{\partial}{\partial x} f(x, y) & =\frac{\partial}{\partial x}\left(4 x^{3}-3 y^{2}\right)=\frac{\partial}{\partial x} 4 x^{3}-\frac{\partial}{\partial x} 3 y^{2}=4 \frac{\partial}{\partial x} x^{3}-3 \frac{\partial}{\partial x} y^{2}=4 \cdot 3 x^{2}-3 \cdot 0= \\
& =12 x^{2}
\end{aligned}
$$

The rules work the same way here as it does with functions of one variable:

$$
\begin{aligned}
& \frac{\partial}{\partial x}(g(x, y)-h(x, y))=\frac{\partial g(x, y)}{\partial x}-\frac{\partial h(x, y)}{\partial x} ; \\
& \frac{\partial}{\partial x}(A(y) r(x, y))=A(y) \frac{\partial r(x, y)}{\partial x}, \text { where } A(y) \text { is constant with respect to } x ; \\
& \frac{\partial}{\partial x}\left(x^{n}\right)=n x^{n-1}, \text { where } n \text { is integer. }
\end{aligned}
$$

Answer: $12 x^{2}$.

