## Answer on Question #52221 - Math - Multivariable Calculus

$$f(x, y) = \sin 2x \cos y + xy^2$$

## Solution:

Let's compute the partial derivative of function f(x,y) with respect to y, with x held constant:

$$\frac{\partial f}{\partial y} = -\sin 2x \sin y + 2xy$$

The rules work the same way here as it does with functions of one variable:

$$\frac{\partial}{\partial y}(g(x,y) + h(x,y)) = \frac{\partial g(x,y)}{\partial y} + \frac{\partial h(x,y)}{\partial y};$$

$$\frac{\partial}{\partial y}(A(x)r(x,y)) = A(x)\frac{\partial r(x,y)}{\partial y}$$
, where  $A(x)$  is constant with respect to  $y$ ;

$$\frac{\partial}{\partial y}(\cos y) = -\sin y;$$

$$\frac{\partial}{\partial y}(y^n) = ny^{n-1}$$
, where  $n$  is integer.

Answer: 
$$\frac{\partial f}{\partial y} = -\sin 2x \sin y + 2xy$$
.