Answer on Question \#52220 - Math - Calculus

The differential coefficient of $y=\sin 3 x$ is \qquad

Solution

Differential coefficient is another name for derivative. Therefore the differential coefficient is $y^{\prime}=\frac{d y}{d x}=\frac{d}{d x}(\sin 3 x)=\left.\frac{d}{d z} \sin (z)\right|_{z=3 x} \cdot \frac{d z}{d x}=\left.\cos (z)\right|_{z=3 x} \cdot(3 x)^{\prime}=(\cos 3 x) \cdot 3=3 \cos 3 x$.

The chain rule for differentiation, property $(A f(x))^{\prime}=A(f(x))^{\prime}$ and known formulae of derivatives $\frac{d(\sin z)}{d z}=\cos (z), \frac{d(x)}{d x}=1$ were applied in this problem.

Answer: $3 \cos 3 x$.

