Answer on Question \#52107 - Math - Calculus

1) Find the directional derivative of $f(x, y, z)=x y^{2}-z^{2}$ in the direction of $\mathrm{v}=(1,-2,2)$ at $(2,1,3)$.

ANSWER:

Solution:

Using the chain rule, we compute the partial derivatives of f :
$f_{x}=y^{2}$
$f_{y}=2 x y$
$f_{z}=-2 z$.
At the point $(2,1,3)$, these become
$f_{x}(2,1,3)=1^{2}=1$
$f_{y}(2,1,3)=2 \cdot 2 \cdot 1=4$
$f_{z}(2,1,3)=-2 \cdot 3=-6$.
vector $v=1 i-2 j+2 k,|v|=\sqrt{1^{2}+(-2)^{2}+2^{2}}=\sqrt{5}$.
Normalising v, we have:
$u=\frac{v}{|v|}=\frac{1}{\sqrt{5}} i-\frac{2}{\sqrt{5}} j+\frac{2}{\sqrt{5}} k$.
Thus the directional derivative is
$\boldsymbol{D}_{u} \boldsymbol{f}(\mathbf{2}, \mathbf{1}, 3)=\nabla f(2,1,3) \cdot u=1 \cdot \frac{1}{\sqrt{5}}-4 \cdot \frac{2}{\sqrt{5}}-6 \cdot \frac{2}{\sqrt{5}}=\frac{1}{\sqrt{5}}-\frac{8}{\sqrt{5}}-\frac{12}{\sqrt{5}}=-\frac{\mathbf{1 9}}{\sqrt{5}}$.
2)Suppose $f(1,0,0)=-3, f x(1,0,0)=-2, f y(1,0,0)=4$ and $f z(1,0,0)=2$. Use linear approximation to estimate $f(1.02,0.01,-0.03)$.

ANSWER:

The above linear approximation at $(x, y, z)=(1.02,0.01,-0.03)$ is

$$
\begin{array}{r}
L(x, y, z)=\mathbf{f}(1,0,0)+D \mathbf{f}(1,0,0)(x-1, y, z) \\
L(1.02,0.01,-0.03)=-3+f_{x}(1,0,0)(x-1)+f_{y}(1,0,0) y+f_{z}(1,0,0) z \\
=-3+(-2)(1.02-1)+4 \cdot 0.01+2 \cdot(-0.03)=-\mathbf{3 . 0 3}
\end{array}
$$

3) Find an equation of the tangent plane at the point $(4,1)$ of the surface $z=x^{2}+y^{-2}$.

ANSWER:

The given surface is the level surface of
$F(x, y, z)=z-x^{2}-y^{-2}$
defined by the equation $F(x, y, z)=0$.
$F_{x}=-2 x$
$F_{y}=2 y^{-3}$
$F_{z}=1$.
Recall that the tangent plane to a
level surface is orthogonal to the gradient vector of F , and so we compute $\nabla \mathrm{F}(x, y, z)=\left(-2 x, 2 y^{-3}, 1\right)$.
At the point $(4,1, z)$, we have
$\nabla \mathrm{F}(4,1, z)=(-8,2,1)$
and so the tangent plane is given by the equation
$-8(x-4)+2(y-1)+1(z-z)=0$.
$-8 x+32+2 y-2+0 \cdot z=0$.
$-8 x+2 y+0 \cdot z+30=0$.
which simplifies to
$-4 x+y+0 \cdot z+15=0$.
http://www.AssignmentExpert.com/

