## Answer on Question \#51992 - Math - Multivariable Calculus

1) Use the method of Language multipliers, find the maximum value of the function $f(x, y, z)=x y z$ subject to the constraint $g(x, y, z)=2 x y+2 y z+z x=12, x>0, y>0, z>0$

## Solution

Let

$$
g(x, y, z)=2 x y+2 y z+z x-12
$$

Compute all the points $(x, y, z)$ that satisfy $\nabla f(x, y, z)=\lambda \nabla g(x, y, z)$ and the constraint $g(x, y, z)=0$. The gradient vectors can be computed easily:

$$
\begin{gathered}
\nabla f(x, y, z)=\left\langle f_{x}, f_{y}, f_{z}\right\rangle=\langle y z, z x, x y\rangle \\
\nabla g(x, y, z)=\left\langle g_{x}, g_{y}, g_{z}\right\rangle=\langle 2 y+z, 2 x+2 z, 2 y+x\rangle
\end{gathered}
$$

Thus, we have the following four equations:

$$
\begin{align*}
& y z=\lambda(2 y+z)  \tag{1}\\
& z x=\lambda(2 x+2 z)  \tag{2}\\
& x y=\lambda(2 y+x)  \tag{3}\\
& 2 x y+2 y z+z x-12=0 \tag{4}
\end{align*}
$$

There are four unknowns and four equations. Hence we should be able to solve the system of equations. Multiplying both sides of (1) by $x$ and both sides of (3) by $z$ lead to

$$
\begin{aligned}
x y z & =\lambda(2 x y+x z) \\
x y z & =\lambda(2 z y+x z)
\end{aligned}
$$

Subtracting these equations gives

$$
0=\lambda(2 x y-2 z y)=2 \lambda y(x-z)
$$

Hence, there are three possibilities, $\lambda=0$ or $y=0$ or $(z-x)=0$.
By the statement of problem, $y>0$, therefore $y=0$ is impossible.
If $\lambda=0$, then plugging to (1)-(3) gives $x y=y z=z x=0$, thus equation (4) becomes
$2 \cdot 0+2 \cdot 0+0-12=0$, which leads to $-12=0$, which does not hold. It means that $\lambda \neq 0$.
Finally we must have $z=x$. Plugging $z=x$ into (2) leads to

$$
x^{2}=4 \lambda x
$$

hence $x=4 \lambda$, since $x \neq 0$. Plugging $x=4 \lambda$ into (3) gives

$$
4 \lambda y=\lambda(2 y+4 \lambda) \rightarrow y=2 \lambda
$$

Therefore, we have $x=z=4 \lambda$ and $y=2 \lambda$. Finally, plugging these to the constraint equation (4) leads to

$$
16 \lambda^{2}+4 \cdot 2 \lambda \cdot 4 \lambda-12=0 \rightarrow 4 \lambda^{2}=1 \rightarrow \lambda= \pm \frac{1}{2}
$$

But we must have $x>0, y>0, z>0$. Thus, $\lambda=\frac{1}{2}$.
This leads to

$$
x=2, z=2, y=1
$$

Since there is only one point, there is no need to compare the function value at this point with that of the other point. Therefore, the maximum volume is

$$
f(2,1,2)=2 \cdot 1 \cdot 2=4
$$

## Answer: 4.

2) Use polar coordinates to find the volume of the solid inside the sphere $x^{2}+y^{2}+z^{2}=16$ and outside the cylinder $x^{2}+y^{2}=4$

## Solution

This volume is given by

$$
\iint_{D} \sqrt{16-x^{2}-y^{2}} d A
$$

where $D$ is the domain
$D=\left\{(x, y) \mid 4 \leq x^{2}+y^{2} \leq 16\right\}$.
Besides, $-\sqrt{16-x^{2}-y^{2}} \leq z \leq \sqrt{16-x^{2}-y^{2}}$, apply the symmetry with respect to $x O y$ plane.
Using polar coordinates $x=r \cos \theta, y=r \sin \theta, d x d y=r d r d \theta$, we see that the volume is

$$
\begin{aligned}
& 2 \int_{0}^{2 \pi} \int_{2}^{4} \sqrt{16-r^{2}} r d r d \theta=2 \int_{0}^{2 \pi} d \theta \int_{2}^{4} r \sqrt{16-r^{2}} d r=\left.\theta\right|_{0} ^{2 \pi}\left(-\int_{2}^{4}(-2 r) \sqrt{16-r^{2}} d r\right) \\
&=(2 \pi-0) \int_{2}^{4}-\sqrt{16-r^{2}} d\left(16-r^{2}\right) \\
&=\left|t(r)=16-r^{2}, d t=-2 r d r, t(2)=12, t(4)=0\right|=-2 \pi \int_{12}^{0} \sqrt{t} d t= \\
&=2 \pi \int_{0}^{12} \sqrt{t} d t=\left.2 \pi \frac{t^{3 / 2}}{3 / 2}\right|_{0} ^{12}=\left(\frac{4 \pi}{3} \cdot 12 \sqrt{12}-0\right)=32 \sqrt{3} \pi
\end{aligned}
$$

Answer: $32 \sqrt{3} \pi$.
3) Given the vector field

$$
F(x, y, z)=\left(y^{2}-4 z, 2 x y+6 y z,-4 x+3 y^{2}\right)
$$

a) Find a potential function of $F$

## Solution

We first check if the vector field $F(x, y, z)$ is conservative by calculating its curl, which in terms of the components of $F(x, y, z)$ is

$$
\begin{gathered}
\operatorname{curl} F(x, y, z)=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{1} & F_{2} & F_{3}
\end{array}\right|=\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}, \frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}, \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right)= \\
=\left(\frac{\partial\left(-4 x+3 y^{2}\right)}{\partial y}-\frac{\partial(2 x y+6 y z)}{\partial z}, \frac{\partial\left(y^{2}-4 z\right)}{\partial z}-\frac{\partial\left(-4 x+3 y^{2}\right)}{\partial x}, \frac{\partial(2 x y+6 y z)}{\partial x}-\frac{\partial\left(y^{2}-4 z\right)}{\partial y}\right)= \\
=(6 y-6 y,-4-(-4), 2 y-2 y)=(0,0,0)
\end{gathered}
$$

The curl of $F(x, y, z)$ is zero. The vector field is defined in all $\mathbb{R}^{3}$, which is simply connected, so the vector field $F(x, y, z)$ is conservative.

Let $f(x, y, z)$ be a potential function of F . It means that
$f_{x}=y^{2}-4 z ; f_{y}=2 x y+6 y z ; f_{z}=-4 x+3 y^{2}$
where $f_{x}=\frac{\partial f}{\partial x}, f_{y}=\frac{\partial f}{\partial y}, f_{z}=\frac{\partial f}{\partial z}$.
Integrating the first equation in (5) with respect to $x$, we get
$f(x, y, z)=x y^{2}-4 x z+g(y, z)$.
Differentiating (6) with respect to $y$, we obtain
$f_{y}=2 x y+g_{y}(y, z)$
so comparing expressions for $f_{y}$ in (5) and (7), we find that
$g_{y}(y, z)=6 y z$.
Integrating (8) with respect to $y$, we get

$$
g(y, z)=3 y^{2} z+h(z)
$$

So, (6) becomes
$f(x, y, z)=x y^{2}-4 x z+3 y^{2} z+h(z)$
and differentiating (9) with respect to $z$ gives
$f_{z}=-4 x+3 y^{2}+h_{z}(z)$.
so comparing expressions for $f_{z}$ in (5) and (10), we find that

$$
\begin{gather*}
h_{z}(z)=0 \\
\text { or } \\
h(z)=\text { const } \tag{11}
\end{gather*}
$$

where const is an arbitrary real constant.
Taking into account (9) and (11), we find that

$$
f(x, y, z)=x y^{2}-4 x z+3 y^{2} z+\text { const }
$$

Answer: $x y^{2}-4 x z+3 y^{2} z+$ const.

