Answer on Question \#51716 - Math - Vector Calculus

$\boldsymbol{a}=2 \boldsymbol{i}-3 \boldsymbol{j}-\boldsymbol{k}, \boldsymbol{b}=\boldsymbol{i}+4 \boldsymbol{j}+3 \boldsymbol{k}$ then what is their angle? if i use dot product formula it comes arc $\cos [(-$ sqrt(13)/\{(2*sqrt(7)\}] and if i use cross product formula then arc $\sin [($ sqrt(15/28)] . two angles are not same if i convert to degree, then 1st one comes 132.951978120924 and the 2 nd one 47.048021879076 . It becomes equal that time if ($180-$ 47.048021879076) . because $\sin (180-x)=\sin x$. but for inverse function, we use the least value. like $\operatorname{arc} \sin (1 / 2)=30$ degree, not 150 degree. so if i think at this angle the angle can't be equal. so which one is correct?

Solution:

The figure represents the unit circle. Abscissa (x-coordinate) represents the cosine of the angle theta, and the ordinate (y-coordinate) represents the sine of the angle theta. Given
$\cos \theta=-\frac{\sqrt{13}}{2 \sqrt{7}}, \sin \theta=\frac{\sqrt{15}}{2 \sqrt{7}}$, the correct answer is $\theta=132.951978120924^{\circ}$, since $\sin \theta>0$ and $\cos \theta<0$ (the angle θ should be greater than 90°, but less than 180° for these values of sine and cosine).

Answer: 132.951978120924°.

