Answer on Question #51704 – Math – Real Analysis

Question. If the co-domain does not contain all the elements of range, can it be a function, like co-domain $\{3, 4, 5, 6, 7\}$ range $\{3, 4, 7\}$? Normally we know range is a subset of co-domain. But here it does not. So is it possible?

Answer. By definition, a function $f: X \to Y$ is the correspondence which associates to each $x \in X$ a unique element from Y denoted by f(x).

The set X is then called the *domain* of f, the set Y is said to be the *co-domain*, and the set $f(X) = \{f(x) \in Y \mid x \in X\}$ is the *range* of f.

The above definition **does not require** that the range f(X) coincides with all the co-domain Y. So in general, the range of the function can be a proper subset of the co-domain:

$$f(X) \subsetneq Y$$
.

The functions for which the range coincides with the co-domain f(X) = Y are called *surjective*.

For example, the functions $\sin, \cos : \mathbb{R} \to \mathbb{R}$ are not surjective have the same range [-1, 1].

Also notice that every function $f: X \to Y$ induces a surjective function $\hat{f}: X \to f(X)$ defined by $\hat{f}(x) = f(x)$. In other words, we can always "replace" co-domain with the range to get a surjective function.

Summarize all that is said above: in general, the range of the function can be a proper subset of the co-domain.