Answer on Question #51699 – Math – Algebra

if a function is neither one-one nor onto , can we say it's a function? if yes , then which function. like this example f:A to B $y=f(x)=x^2+3$ A={-1,1,2,3} B={4,5,6,7}

THIS IS NEITHER ONE-ONE NOR ONTO. SO, if it is a function, so what is the name of this?

Solution

Main parts of function: the input; the relationship, the output.

Definition 1. A function f from a set A to a set B relates each element of A with exactly one element of B (the same set A=B is possible).

In other words, every element in **A** is related to some element in **B** (But some elements of **B** might not be related to at all, which is fine).

Besides, a function is single valued, that is, function will not give back two or more results for the same input (for example, "f(2)=5, f(2)=6" is not correct).

The one-to-many case " $f(a_1) = b_1$, $f(a_1) = b_2$ " is not allowed, but

many-to-one case " $f(a_1) = b_1$, $f(a_2) = b_1$ " is allowed.

Definition 2. A function $f: A \rightarrow B$ is called **onto** if for all **b** in **B** there is an **a** in **A** such that f(a) = b.

Then all elements in **B** are used.

Definition 3. A function $f: A \rightarrow B$ is called **one-to-one** if whenever $f(a_1) = f(a_2)$ then $a_1 = a_2$.

No element of B is the image of more than one element in A.

The neither one-to-one nor onto function (in other words neither injective nor surjective function) does not have special name. It is a function in general.

Example 1. If $f: A \to B$, where $A = \mathbb{R}$, $B = \mathbb{R}$, then $f(x) = x^2$ is an example of neither one-to-one nor onto function. It is not onto, since the image of f(x) is $[0; +\infty)$, and not one-to-one, since f(-1) = f(1).

Example 2. A function in this question ($f: A \rightarrow B$, where $A=\{-1,1,2,3\}$, $B=\{4,5,6,7\}$, y=f(x), $f(x)=x^2+3$) is not defined at point 3, because a function has only one relationship for each input value from A, but $y(3)=3^2+3=12$ and 12 is not element of B. In other words, element 3 from A is not assigned to any element of B.

Example 3. If we take y=f(x), $f(x)=x^2 + 3$, $A=\{-1,1,2,3\}$, $B=\{4,5,,7,12\}$, then function $f: A \rightarrow B$ is well defined, it is onto function, but not one-to-one (here f(-1) = f(1)).

Example 4. By means of the least squares method we can suggest **another function** y=f(x), for example, $y=4.25+0.541667x+0.25x^2-0.041667x^3$, which approximately represents **f:** $\mathbf{A} \rightarrow \mathbf{B}$, where $A=\{-1,1,2,3\}$, $B=\{4,5,6,7\}$.