Answer on Question \#51698 - Math - Combinatorics | Number Theory

Let p be a prime number. If p divides a^{2}, prove that p divides a, where a is a positive integer.

Solution

Let p divide a^{2}. Assume that p doesn't divide a.
Since p divides a^{2}, then there exists integer k such that $a^{2}=p k$. Hence we obtain $a=\frac{p k}{a}$. Since a is an positive integer, then $\frac{p k}{a}$ is an positive integer. Since p is a prime number then it has only two divisors: 1 and p. Due to our assumption p doesn't divide a, therefore $G C D(p, a)=1$. Hence $\frac{k}{a}$ is a positive integer. Assume that $t=\frac{k}{a}$, then t is a positive integer.
Therefore $a=\frac{p k}{a}=p t$, where t is a positive integer, but this means that p divides a. So, we come to a contradiction to our assumption.
Thus, p divides a.

