Answer on Question \#51697, Math, Calculus:

$$
\frac{x}{(x+1)\left(x^{3}+1\right)}=-\frac{1}{3(x+1)^{2}}+\frac{1}{3\left(x^{2}-x+1\right)}
$$

Solution

Decompose this partial fraction:

$$
\frac{x}{(x+1)\left(x^{3}+1\right)}
$$

One root of the $x^{3}+1$ polynomial is -1 . To find the factoring, divide the polynomial by $x+1$:

$$
\begin{aligned}
& \frac{x^{3}}{} \quad+1 \left\lvert\, \frac{x+1}{x^{3}+x^{2}} \begin{array}{l}
x^{2}-x+1 \\
-x^{2}+1
\end{array}\right. \\
& \frac{-x^{2}-x}{} \\
& \qquad \begin{array}{r}
x+1 \\
\frac{x+1}{0}
\end{array}
\end{aligned}
$$

i.e. $x^{3}+1=(x+1)\left(x^{2}-x+1\right)$

Therefore:

$$
\frac{x}{(x+1)\left(x^{3}+1\right)}=\frac{x}{(x+1)(x+1)\left(x^{2}-x+1\right)}=\frac{x}{(x+1)^{2}\left(x^{2}-x+1\right)}
$$

Represent the task fraction as:

$$
\begin{gathered}
\frac{x}{(x+1)^{2}\left(x^{2}-x+1\right)}=\frac{A}{(x+1)}+\frac{B}{(x+1)^{2}}+\frac{C x+D}{x^{2}-x+1}= \\
=\frac{A(x+1)\left(x^{2}-x+1\right)+B\left(x^{2}-x+1\right)+C x(x+1)^{2}+D(x+1)^{2}}{(x+1)^{2}\left(x^{2}-x+1\right)}= \\
=\frac{A\left(x^{3}+1\right)+B\left(x^{2}-x+1\right)+C\left(x^{3}+2 x^{2}+x\right)+D\left(x^{2}+2 x+1\right)}{(x+1)^{2}\left(x^{2}-x+1\right)}
\end{gathered}
$$

Equate the rates of equal powers:

$$
\begin{aligned}
& x^{3}: A+C=0 \\
& x^{2}: B+2 C+D=0 \\
& x^{1}:-B+C+2 D=1 \\
& x^{0}: A+B+D=0
\end{aligned}
$$

The first equation is equal to $A=-C$
Sum of the third and the forth equations gives:

$$
A+C+3 D=1 \Rightarrow D=\frac{1}{3}
$$

Sum of the second and the third equations gives:

$$
3 C+3 D=1 \Rightarrow C=\frac{1}{3}-D=0
$$

From the third equation:

$$
B=2 D-1=-\frac{1}{3}
$$

Finally:

$$
\frac{x}{(x+1)\left(x^{3}+1\right)}=-\frac{1}{3(x+1)^{2}}+\frac{1}{3\left(x^{2}-x+1\right)}
$$

