Answer on Question \#51480 - Math - Differential Calculus | Equations

(a) Differentiate the following function
$y=x^{\wedge} 2 e^{\wedge} x$
(b) A cosmetic company is planning the introduction of a promotion of a new lipstick line. The marketing research department after test marketing the new line in a carefully selected city found that the demand in the city is approximately given by $p=12 e^{\wedge}(-x)$, where x which should be within this range, $0 \leq x \leq 2$ were thousand lipsticks sold per week at a price of Kenya shillings. At what price will the weekly revenue be at maximum? What is the maximum weekly revenue

Solution.

(a) $y=x^{2} e^{x}, y^{\prime}=2 x e^{x}+x^{2} e^{x}=x(x+2) e^{x}$.
(b) $R=p * x=12 x e^{-x}$;

$$
\begin{aligned}
& \qquad \frac{d R}{d x}=12 e^{-x}-12 x e^{-x}=12(1-x) e^{-x} . \\
& \frac{d R}{d x}=0 \rightarrow x=1 . \\
& R(1)=12 e^{-1} \approx 4.416 .
\end{aligned}
$$

The weekly revenue will be at maximum at price 1 Kenya shilling.
The maximum weekly revenue 4416 Kenya shillings.

