Answer on Question #51352 – Math – Geometry

Grains of fine California beach sand are approximately spheres with an average radius of 50 μ m and are made of silicon dioxide, which has a density of 2.4*10³ kg/m³. What mass of sand grains would have a total surface area (the total area of all the individual spheres) equal to the surface area of cube 1.2 m on an edge.

Solution

 $r = 50 \mu m = 5*10^{-5} m;$ $\rho = 2.4*10^{3} kg/m^{3};$ a = 1.2 m; m - ?

One grain has the surface area: $S_g = 4\pi r^2$.

The surface area of cube: $S_c = 6a^2$.

Number of grains, that have total surface area equal to the surface area of cube, is given by

$$N = S_c / S_g = \frac{3a^2}{2\pi r^2}.$$

Volume of one grain: $V_0 = 4\pi r^3/3$.

 $m = \rho^* V_0^* N = \rho \frac{4\pi r^3 * 3a^2}{3 * 2\pi r^2} = 2\rho ra^2 = 2^* 2.4^* 10^{3*} 5^* 10^{-5*} 1.44 = \textbf{0.3456 kg}$

Answer: m = 0.3456 kg