Answer on Question \#51349 - Math - Vector Calculus

A hiker travels 2.5 km due North followed by 4.5 km on a bearing 132°. Calculate the distance and bearing of the hiker's final position from his initial position.

Solution

Fig. 1
We need to find the angle $\angle B A C$ and distance between points B and C (see Fig.1). From the figure 1 it is clear that angle $\angle A B C=180^{\circ}-132^{\circ}=48^{\circ}$.

According to the law of cosines, $(A C)=\sqrt{(A B)^{2}+(B C)^{2}-2(A B)(B C) \cos (\angle A B C)}$ $=\sqrt{2.5^{2}+4.5^{2}-2 \cdot 2.5 \cdot 4.5 \cos 38^{0}}=2.96 \mathrm{~km}$.

According to the law of sines,
$\frac{B C}{\sin (\angle B A C)}=\frac{A C}{\sin (\angle A B C)} \Rightarrow \sin (\angle B A C)=\frac{B C}{A C} \sin (\angle A B C) \Rightarrow \angle B A C=\arcsin \left(\frac{B C}{A C} \sin (\angle A B C)\right)$
$\angle B A C=\arcsin \left(\frac{B C}{A C} \sin (\angle A B C)\right)=\arcsin \left(\frac{4.5}{2.96} \sin 38^{\circ}\right) \approx 69^{\circ}$, where $\arcsin (\mathrm{x})$ is the inverse of sine function $\sin (\mathrm{x})$.

Answer: the distance is 2.96 km and bearing of the hiker's final position from his initial position is 69°.

