Answer on Question \#51337 - Math - Vector Calculus

In an orienteering race the first checkpoint is $a=500 \mathrm{~m}$ from the start and on a bearing of $\varphi=$ 30°. The second checkpoint is $b=400 \mathrm{~m}$ from the first checkpoint and $l=600 \mathrm{~m}$ from the start. Find, to the nearest degree, the two possible bearings α_{1} and α_{2} of checkpoint 2 from the start.

Solution

α_{1} :
According to the law of cosines used in triangle 102, where 1 is the first checkpoint, 0 is the start, 2 is one of possible second checkpoints, obtain

$$
\begin{gathered}
b^{2}=a^{2}+l^{2}-2 a l \cos \left(\alpha_{1}-\varphi\right) \\
\alpha_{1}=\arccos \left(\frac{a^{2}+l^{2}-b^{2}}{2 a l}\right)+\varphi=\arccos \left(\frac{250000 \mathrm{~m}^{2}+360000 \mathrm{~m}^{2}-160000 \mathrm{~m}^{2}}{600000 \mathrm{~m}^{2}}\right)+30^{\circ}= \\
=\arccos 0.75+30^{\circ}=41^{\circ}+30^{\circ}=71^{\circ}
\end{gathered}
$$

where $\arccos (x)$ is the inverse of cosine function $\cos (x)$.
α_{2} :
According to the law of cosines used in triangle 102^{\prime}, where 1 is the first checkpoint, O is the start, 2' is one of possible second checkpoints, obtain

$$
b^{2}=a^{2}+l^{2}-2 a l \cos \left(\varphi-\alpha_{2}\right)
$$

$\alpha_{2}=\varphi-\arccos \left(\frac{a^{2}+l^{2}-b^{2}}{2 a l}\right)=30^{\circ}-\arccos \left(\frac{250000 \mathrm{~m}^{2}+360000 \mathrm{~m}^{2}-160000 \mathrm{~m}^{2}}{600000 \mathrm{~m}^{2}}\right)=$
$=30^{\circ}-\arccos 0.75=30^{\circ}-41^{\circ}=-11^{\circ}$ or 169°
Answer: $\alpha_{1,2}=\varphi \pm \arccos \left(\frac{a^{2}+l^{2}-b^{2}}{2 a l}\right)=71^{\circ},-11^{\circ}$.

