Answer on Question \#51334 - Math - Vector Calculus

Two forces have magnitudes of 8 N and 12 N and the angle between them is 130°. Find the magnitude of the resultant and the angle it makes with the larger of the two forces.

Figure

Solution

Step 1.

Let's use Parallelogram Law of Vector Addition: "If two vector quantities are represented by two adjacent sides of a parallelogram then the diagonal of the parallelogram will be equal to the resultant of these two vectors."
Let's denote $\angle B O A=130^{\circ},|\overrightarrow{O B}|=b=12 N,|\overrightarrow{O A}|=a=8 N,|\overrightarrow{O C}|=c, \angle B O C=\boldsymbol{\beta}$.
Resulting force is $\overrightarrow{O C}=\overrightarrow{O B}+\overrightarrow{O A}$, OBCA is a parallelogram, $\angle O B C=\angle O A C=180^{\circ}-130^{\circ}=50^{\circ}$, Let's consider triangle $O B C$. We find the magnitude of the resultant according to the Law of Cosines. $c^{2}=b^{2}+a^{2}-2 a b \cos \angle O B C=12^{2}+8^{2}-2 \cdot 12 \cdot 8 \cos 50^{\circ}=208-192 \cos \frac{50 \pi}{180}=208-192 \cdot 0.64=84.58$ $c=\sqrt{c^{2}}=\sqrt{84.58}=9,2 \Rightarrow|\overrightarrow{O C}|=9,2 N$

Step 2.

According to the Law of Sines, $\frac{B C}{\sin \angle B O C}=\frac{O C}{\sin \angle O B C}$, that is,

$$
\frac{a}{\sin \beta}=\frac{c}{\sin 50^{\circ}} \Rightarrow \sin \beta=\frac{a}{c} \sin 50^{\circ}=\frac{8}{9,2} \sin 50^{\circ}=0,67 \Rightarrow \beta=41,8^{\circ} .
$$

Answer: $|\overrightarrow{O C}|=9,2 N, \boldsymbol{\beta}=41,8^{\circ}$.

