Answer on Question \#51248 - Math - Differential Equations

Solve: $z(p-q)=z^{2}+\left(x+y^{2}\right)$

Solution:

p denotes $\frac{\partial z}{\partial x^{\prime}}$ and q denotes $\frac{\partial z}{\partial y}$. Therefore,

$$
z \frac{\partial z}{\partial x}-z \frac{\partial z}{\partial y}=z^{2}+\left(x+y^{2}\right)
$$

The general solution of this differential equation is given by

$$
F\left[u_{1}(x, y, z), u_{2}(x, y, z)\right]=0,
$$

where $F\left(u_{1}, u_{2}\right)$ is continuously differentiable function, $u_{1}(x, y, z)$ and $u_{2}(x, y, z)$ are two independent first integrals of autonomous system

$$
\frac{d x}{z}=-\frac{d y}{z}=\frac{d z}{z^{2}+\left(x+y^{2}\right)}
$$

Let's first consider the following equation

$$
\begin{gathered}
\frac{d x}{z}=-\frac{d y}{z} \\
d(x+y)=0
\end{gathered}
$$

This gives one of the first integrals

$$
u_{1}(x, y, z)=x+y
$$

Let's now consider the another equation

$$
\begin{aligned}
& -\frac{d y}{z}=\frac{d z}{z^{2}+\left(x+y^{2}\right)} \\
& z^{2}+\left(x+y^{2}\right)=-z z^{\prime}
\end{aligned}
$$

Using $u_{1}=x+y$, we obtain

$$
z^{2}+u_{1}-y+y^{2}=-\frac{1}{2}\left(z^{2}\right)^{\prime}
$$

Let's first find the solution of homogenous equation:

$$
z^{2}=-\frac{1}{2}\left(z^{2}\right)^{\prime}
$$

Its solution is given by

$$
z_{p}^{2}=u_{2} e^{-2 y},
$$

where u_{2} is some constant.
The particular solution is given by

$$
z_{p}^{2}=-1-u_{1}+2 y-y^{2}
$$

Indeed

$$
z_{p}^{2}+\frac{1}{2}\left(z_{p}^{2}\right)^{\prime}=-1-u_{1}+2 y-y^{2}+\frac{1}{2}(2-2 y)=-u_{1}+y-y^{2}
$$

Therefore, the general solution is given by

$$
z^{2}=u_{2} e^{-2 y}-1-u_{1}+2 y-y^{2}
$$

which is equivalent to

$$
\begin{gathered}
u_{2}=e^{2 y}\left(z^{2}+1+u_{1}-2 y+y^{2}\right)=e^{2 y}\left(z^{2}+1+(x+y)-2 y+y^{2}\right)= \\
=e^{2 y}\left(z^{2}+1+x-y+y^{2}\right)
\end{gathered}
$$

This gives another first integral. Therefore, the solution of the initial equation is given by

$$
F\left[x+y, e^{2 y}\left(z^{2}+1+x-y+y^{2}\right)\right]=0
$$

Answer: $\quad F\left[x+y, e^{2 y}\left(z^{2}+1+x-y+y^{2}\right)\right]=0$, where $F\left(u_{1}, u_{2}\right)$ is continuously differentiable function.

