Question:

a) Find $f(y)$ so that equation $f(y) d x-z x d y-x y \ln y d z=0$ is integrable. Also obtain the corresponding integral using Natani's method.
b) Find the differential equation of the family of surfaces $\Phi\left(z(x+y)^{2}, x^{2}-y^{2}\right)=0$

Solution:

a) Equation $f(y) d x-z x d y-x y \ln y d z=0$ is integrable, if

$$
\begin{gathered}
\boldsymbol{X} \cdot \operatorname{rot} \boldsymbol{X}=0 \\
\boldsymbol{X}=(f(y),-z x,-x y \ln y)
\end{gathered}
$$

Let's calculate $\operatorname{rot} \boldsymbol{X}$

$$
\begin{aligned}
\operatorname{rot} \boldsymbol{X}=\boldsymbol{\nabla} \times \boldsymbol{X} & =\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
f(y) & -z x & -x y \ln y
\end{array}\right| \\
& =\boldsymbol{i}\left(\frac{\partial}{\partial y}(-x y \ln y)-\frac{\partial}{\partial z}(-x z)\right)-\boldsymbol{j}\left(\frac{\partial}{\partial x}(-x y \ln y)-\frac{\partial}{\partial z} f(y)\right) \\
& +\boldsymbol{k}\left(\frac{\partial}{\partial x}(-z x)-\frac{\partial}{\partial y} f(y)\right)=(-x \ln y) \boldsymbol{i}+(y \ln y) \boldsymbol{j}+\left(-z-f^{\prime}(y)\right) \boldsymbol{k}
\end{aligned}
$$

Then

$$
\boldsymbol{X} \cdot \operatorname{rot} \boldsymbol{X}=-x \ln y \cdot f(y)+x y \ln y f^{\prime}(y)=0
$$

Thus $x \ln y \cdot\left(y f^{\prime}(y)-f(y)\right)=0$, hence $y f^{\prime}(y)-f(y)=0$
The solution of the last equation is determined by

$$
\frac{d f}{f}=\frac{d y}{y} \rightarrow \ln |f(y)|=\ln |y|+\ln |A| \rightarrow f(y)=A \cdot y
$$

where A is a real constant. Finally, equation takes the form

$$
A y d x-z x d y-x y \ln y d z=0
$$

Using Natani's method we firstly put $z=$ const and solve the obtained equation

$$
A y d x=z x d y \rightarrow A \frac{d x}{x}=z \frac{d y}{y} \rightarrow A \ln x=z \ln y+F(z)
$$

Now we let $x=1$. Then equation takes the form

$$
-z d y-y \ln y d z=0
$$

and

$$
F(z)=-\mathrm{z} \cdot \ln y . \text { Thus, }
$$

$$
\begin{gathered}
z d y+y \ln y d z=0 \rightarrow \frac{d y}{y \ln y}+\frac{d z}{z}=0 \rightarrow \ln |\ln y|=-\ln |z|+\ln |C| \rightarrow \\
\ln y=\frac{C}{z}
\end{gathered}
$$

Therefore,
$F(z)=-z \ln y=-z \cdot \frac{C}{z}=-C=K$ (another constant).
Finally,

$$
A \ln x=z \ln y+K
$$

where K is an arbitrary real constant.
b) The general solution of first-order differential equation

$$
\Phi\left(z(x+y)^{2}, x^{2}-y^{2}\right)=0
$$

implies that

$$
\begin{gathered}
z(x+y)^{2}=c_{1}=\text { const } \\
x^{2}-y^{2}=c_{2}=\text { const }
\end{gathered}
$$

After differentiating these both equation we get

$$
\begin{gathered}
d z=-2 z \cdot \frac{d x+d y}{x+y} \\
x d x=y d y
\end{gathered}
$$

First-order differential equation

$$
a \cdot \frac{\partial z}{\partial x}+b \cdot \frac{\partial z}{\partial y}=c
$$

is equivalent to

$$
\frac{d x}{a}=\frac{d y}{b}=\frac{d z}{c}
$$

From $x d x=y d y$ and previous equation, we get

$$
\frac{d x}{y}=\frac{d y}{x} \rightarrow a=y, \quad b=x
$$

Putting $d x=\frac{y}{x} d y$ into $d z=-2 z \cdot \frac{d x+d y}{x+y}$, we get

$$
d z=-2 z \cdot \frac{d y}{x}
$$

Thus

$$
\frac{d z}{c}=-\frac{2 z}{c} \cdot \frac{d y}{x}=\frac{d y}{b}=\frac{d y}{x} \rightarrow c=-2 z
$$

Finally,

$$
\frac{d x}{y}=\frac{d y}{x}=\frac{d z}{-2 z}
$$

or

$$
y \cdot \frac{\partial z}{\partial x}+x \cdot \frac{\partial z}{\partial y}=-2 z
$$

Answer: $y \cdot \frac{\partial z}{\partial x}+x \cdot \frac{\partial z}{\partial y}=-2 z$

