Answer on Question \#51024 - Math - Analytic Geometry

\boldsymbol{a} and \boldsymbol{b} are vectors defined by $\boldsymbol{a}=8 \boldsymbol{i}+2 \boldsymbol{j}-\mathbf{3} \boldsymbol{k}$ and $\boldsymbol{b}=3 \boldsymbol{i}-6 \boldsymbol{j}+4 \boldsymbol{k}$, where $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ are mutually perpendicular unit vectors. Show that \boldsymbol{a} and \boldsymbol{b} are perpendicular to each other.

Solution

To show that \boldsymbol{a} and \boldsymbol{b} are perpendicular vectors, we must find scalar (dot) product of these vectors.
$(\boldsymbol{a}, \boldsymbol{b})=|\boldsymbol{a}||\boldsymbol{b}| \cos \alpha$, where α is angle between \boldsymbol{a} and \boldsymbol{b}. If \boldsymbol{a} and \boldsymbol{b} are perpendicular, than α is equal to $\frac{\pi}{2}$. Then $(\boldsymbol{a}, \boldsymbol{b})=0$. So, in our case we have
$(\boldsymbol{a}, \boldsymbol{b})=(8 \boldsymbol{i}+2 \boldsymbol{j}-3 \boldsymbol{k}, 3 \boldsymbol{i}-6 \boldsymbol{j}+4 \boldsymbol{k})=8 \cdot 3+2 \cdot(-6)+(-3) \cdot 4=$ $=24-12-12=0$

Answer: \boldsymbol{a} and \boldsymbol{b} are perpendicular vectors.

