Answer on Question \#50972 - Math - Calculus

Question

Find the area of the region bounded by the graph of curves

$$
y=x+6, y=x^{3}, y=-\frac{x}{2}
$$

Solution

The graph of these curves looks like this one:
Blue line is $y=x+6$, green is
$y=-\frac{x}{2}$, orange curve is $y=x^{3}$.
The point of intersection of blue and green line is determined by

$$
\begin{gathered}
x_{1}+6=-\frac{x_{1}}{2} \\
x_{1}=-4
\end{gathered}
$$

The point of intersection of blue and orange line is determined by

$$
x_{2}+6=x_{2}^{3} \rightarrow x_{2}=2
$$

Green and orange curves intersect at the point

$$
x_{3}^{3}=-\frac{x_{3}}{2} \rightarrow x_{3}=0
$$

Therefore, the area of bounded region is

$$
S=\int_{-4}^{2}(x+6) d x-\int_{-4}^{0}\left(-\frac{x}{2}\right) d x-\int_{0}^{2} x^{3} d x
$$

Evaluate it:

$$
S=\frac{(2+6)^{2}}{2}-\frac{(-4+6)^{2}}{2}+\frac{0^{2}}{4}-\frac{(-4)^{2}}{4}-\frac{2^{4}}{4}+\frac{0^{4}}{4}=22
$$

Answer: $S=22$.

