Answer on Question #50924 – Math – Integral Calculus

Problem

Find ∫e13dx

Remark. There is error in formatting. I suppose that we need to find $\int e^{13} dx$ or $\int_{1}^{3} e dx$ or $\int_{1}^{3} e^{x} dx$. In all cases tables of integrals involving powers or exponential function are used. Besides, the second and the third cases require Newton-Leibnitz formula.

Solution

First case

 e^{13} is constant, so $\int e^{13} dx = e^{13}x + C$, where C is an arbitrary real constant.

Second case

e is constant, so $\int_{1}^{3} e dx = ex|_{1}^{3} = e(3-1) = 2e$.

Third case $\int_{1}^{3} e^{x} dx = e^{x}|_{1}^{3} = e^{3} - e$