Answer on Question \#50924 - Math - Integral Calculus

Problem

Find $\int e 13 \mathrm{dx}$
Remark. There is error in formatting. I suppose that we need to find $\int e^{13} d x$ or $\int_{1}^{3} e d x$ or $\int_{1}^{3} e^{x} d x$. In all cases tables of integrals involving powers or exponential function are used. Besides, the second and the third cases require Newton-Leibnitz formula.

Solution

First case
e^{13} is constant, so $\int e^{13} d x=e^{13} x+C$, where C is an arbitrary real constant.

Second case

e is constant, so $\int_{1}^{3} e d x=\left.e x\right|_{1} ^{3}=e(3-1)=2 e$.
Third case

$$
\int_{1}^{3} e^{x} d x=\left.e^{x}\right|_{1} ^{3}=e^{3}-e
$$

