Answer on Question \#50904 - Math - Differential Calculus | Equations

a) Find the surface which intersects the surfaces of the system $z(x+y)=c(3 z+1)$ orthogonally and which passes through the circle $x^{2}+y^{2}=1, z=1$.
b) Show that the complete integral of $z=p x+q y-2 p-3 q$ represents all possible planes through the points $(2,3,0)$.
c) Find the values of n for which the equation $(n-1)^{2} u_{x x}-y^{2 n} u_{y y}=n y^{2 n-1} u_{y}$ is
i) parabolic ii) hyperbolic.

Solution

a) The given system of surfaces is given by

$$
\begin{align*}
& f(x, y, z)=\frac{z(x+y)}{3 z+1}=C . \tag{1}\\
& \frac{\partial f}{\partial x}=\frac{z}{3 z+1}, \frac{\partial f}{\partial y}=\frac{z}{3 z+1}, \frac{\partial f}{\partial z}=(x+y) \frac{(3 z+1)-3 z}{(3 z+1)^{2}}=\frac{(x+y)}{(3 z+1)^{2}} .
\end{align*}
$$

The required orthogonal surface is solution of
$p \frac{\partial f}{\partial x}+q \frac{\partial f}{\partial y}=\frac{\partial f}{\partial z}$ or $p \frac{z}{3 z+1}+q \frac{z}{3 z+1}=\frac{(x+y)}{(3 z+1)^{2}}$ or $z(3 z+1) p+z(3 z+1) q=x+y$.
Lagrange's auxiliary equations for (2) are

$$
\begin{equation*}
\frac{d x}{z(3 z+1)}=\frac{d y}{z(3 z+1)}=\frac{d z}{x+y} \tag{3}
\end{equation*}
$$

Taking the first two fractions of (3), we get

$$
\begin{equation*}
d x-d y=0 \text { so that } x-y=C_{1} \tag{4}
\end{equation*}
$$

Choosing $x, y,-z(3 z+1)$ as multipliers, each fraction of (3)

$$
=\frac{x d x+y d y-z(3 z+1) d z}{0} \rightarrow x d x+y d y-2 z^{2} d z-z d z
$$

Integrating, $\frac{1}{2} x^{2}+\frac{1}{2} y^{2}-3\left(\frac{z^{3}}{3}\right)-\frac{1}{2} z^{2}=\frac{1}{2} C_{2}$ or $x^{2}+y^{2}-2 z^{3}-z^{2}=C_{2}$.
Hence any surface which is orthogonal to (1) has equation of the form

$$
\begin{equation*}
x^{2}+y^{2}-2 z^{3}-z^{2}=\phi(x-y) \tag{6}
\end{equation*}
$$

where ϕ being arbitrary function .
In order to get the desired surface passing through the circle $x^{2}+y^{2}=1, z=1$ we must choose $\phi(x-y)=-2$. Thus, the required particular surface is

$$
\begin{equation*}
x^{2}+y^{2}-2 z^{3}-z^{2}=-2 \tag{7}
\end{equation*}
$$

b) Given that $z=p x+q y-2 p-3 q$,
which is of the form $z=p x+q y+f(p, q)$ and so its complete integral is
$z=a x+b y-2 a-3 b, a, b$ being arbitrary constants.
Since (8) is a linear equation in x, y, z, it follows that (8) represents planes for various values of a and b. Again putting $x=2, y=3, z=0$ in (8) we have

$$
0=2 a+3 b-2 a-2 b, i . e .0=0
$$

showing that the coordinates of the point $(2,3,0)$ satisfy (8). Hence the complete integral (8) of (7) represents all possible planes passing through the point ($2,3,0$).
c) i) The equation is parabolic, if

$$
\begin{gathered}
D=B^{2}-4 A C=0 \\
0-4(n-1)^{2}\left(-y^{2 n}\right)=0 .
\end{gathered}
$$

So $n=1$. We have:

$$
-y^{2} u_{y y}=y u_{y}
$$

Answer: 1.

ii)The equation is hyperbolic, if

$$
\begin{gathered}
D=B^{2}-4 A C>0 . \\
0-4(n-1)^{2}\left(-y^{2 n}\right)=\left(2 y^{n}(n-1)\right)^{2}>0 .
\end{gathered}
$$

So it is true for $n \neq 1$.
Answer: $(-\infty ; \mathbf{1}) \cup(\mathbf{1} ; \infty)$.

