## Answer on Question \#50897-Math-Differential Calculus-Equations

a) A wet porus substance in the open air loses its moisture at a rate proportional to the moisture content. If a sheet hung in the wind loses half its moisture during the first hour, then find the time when it has lost $95 \%$ moisture provided the weather conditions remain the same.
b) If the interest is compounded continuously, the amount of money invested increases at a rate proportional to its size. Let Rs. 10,000 be invested at $10 \%$ compounded continuously. Then in how many years will the original investment double itself?
c) Solve: $d y / d x+\left(x / 1-x^{\wedge} 2\right) y=x y, y(0)=1$.

## Solution

a)
$\frac{d M}{d t}=-k M \rightarrow M=M_{0} e^{-k t}$.
$M(1$ hour $)=\frac{1}{2} M_{0} \rightarrow \frac{1}{2}=e^{-k} \rightarrow k=\ln 2$ hours $^{-1}$.
$M(T)=M_{0}(1-0.95)=0.05 M_{0}=M_{0} e^{-k T}$.
$T=\frac{1}{k} \ln 20=\frac{\ln 20}{\ln 2}=4.3$ hours.

## Answer: 4.3 hours.

b) $r=0.1$.
$R=R_{0} e^{r t}$.
$R(T)=2 R_{0}=R_{0} e^{r T}$.
$T=\frac{1}{r} \ln 2=\frac{\ln 2}{0.1}=6.9$ years.

## Answer: 6.9 years.

c)
$\frac{d y}{d x}+\left(\frac{x}{1-x^{2}}\right) y=x \sqrt{y}, y(0)=1$.
$t^{2}=y \rightarrow 2 t \frac{d t}{d x}+\left(\frac{x}{1-x^{2}}\right) t^{2}=x t$.
$2 \frac{d t}{d x}+\left(\frac{x}{1-x^{2}}\right) t=x$.

General solution:
$2 \frac{d t}{d x}+\left(\frac{x}{1-x^{2}}\right) t=0 \rightarrow \frac{2 d t}{t}=-\left(\frac{x d x}{1-x^{2}}\right)=\frac{1}{2} \frac{d\left(1-x^{2}\right)}{1-x^{2}} \rightarrow \ln \frac{t^{2}}{t_{0}^{2}}=\frac{1}{2} \ln \left(1-x^{2}\right)$.
$t^{2}=t_{o}^{2} \sqrt{1-x^{2}} \rightarrow t=t_{0} \sqrt[4]{1-x^{2}}$.

Partial solution is
$t=-\frac{1}{3}\left(1-x^{2}\right)$.

Thus
$y=\left(t_{0} \sqrt[4]{1-x^{2}}-\frac{1}{3}\left(1-x^{2}\right)\right)^{2}, y(0)=1$.
$1=\left(t_{0}-\frac{1}{3}\right)^{2} \rightarrow t_{0}=\frac{4}{3}$
Answer: $\left(\frac{4}{3} \sqrt[4]{1-x^{2}}-\frac{1}{3}\left(1-x^{2}\right)\right)^{2}$.

## www.assignmentexpert.com

