Answer on Question \#50894 - Math - Differential Calculus | Equations

a) Write a suitable form of particular solution for solving the equation

$$
y^{\prime \prime}+3 y^{\prime}+2 y=e^{x}\left(x^{2}+1\right) \sin 2 x+3 e^{-x} \cos x+4 e^{x}
$$

by the method of undetermined coefficients.
b) Verify that e^{x} and $x e^{x}$ are solutions of the homogeneous equation corresponding to the equation

$$
y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{1+x^{2}},-\infty<x<\infty
$$

and find the general solution using the method of variation of parameters.
c) If $y_{1}=2 x+2$ and $y_{2}=-\frac{x^{2}}{2}$ are the solutions of

$$
x y^{\prime}+y^{\prime}-\frac{y^{\prime 2}}{2}
$$

then are the constant multiples $c_{1} y_{1}$ and $c_{2} y_{2}$, where c_{1} and c_{2} are arbitrary, also solutions of the given differential equation? Is the sum $y_{1}+y_{2}$ a solution?

Solution

a) We first consider the solutions to the corresponding homogeneous equation. Using the characteristic equation $m^{2}+3 m+2=0 \rightarrow m_{1}=-2, m_{2}=-1$, we have solutions $y_{1}=e^{-2 x}$ and $y_{2}=e^{-x}$. Thus we have the form

$$
Y=\left(A x^{2}+B x+C\right) e^{x} \sin 2 x+\left(D x^{2}+E x+F\right) e^{x} \cos 2 x+G e^{-x} \cos x+H e^{-x} \sin x+I e^{x}
$$

b) The homogeneous equation corresponding to the equation

$$
y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{1+x^{2}},-\infty<x<\infty
$$

Is

$$
\begin{gathered}
y^{\prime \prime}-2 y^{\prime}+y=0,-\infty<x<\infty \\
\frac{d^{2}}{d x^{2}}\left(e^{x}\right)=e^{x}, \frac{d}{d x}\left(e^{x}\right)=e^{x}
\end{gathered}
$$

So,

$$
y^{\prime \prime}-2 y^{\prime}+y=e^{x}-2 e^{x}+e^{x} \equiv 0
$$

And we see that e^{x} is a solution.

$$
\frac{d^{2}}{d x^{2}}\left(x e^{x}\right)=(x+2) e^{x}, \frac{d}{d x}\left(x e^{x}\right)=(x+1) e^{x}
$$

So,

$$
y^{\prime \prime}-2 y^{\prime}+y=(x+2) e^{x}-2(x+1) e^{x}+x e^{x} \equiv 0
$$

And we see that $x e^{x}$ is a solution.

$$
y=c_{1} e^{x}+c_{2} x e^{x} .
$$

The Wronskian is given by

$$
W=\left[\begin{array}{cc}
e^{x} & x e^{x} \\
e^{x} & (x+1) e^{x}
\end{array}\right]=(x+1) e^{2 x}-x e^{2 x}=e^{2 x} \neq 0 .
$$

We seek the solution in the form $y=y_{1} v_{1}+y_{2} v_{2}$

$$
\begin{gathered}
v_{1}=\int\left(-\frac{y_{2} R}{W}\right) d x=-\int \frac{x e^{x} \cdot \frac{e^{x}}{1+x^{2}}}{e^{2 x}} d x=\ln \frac{1}{\sqrt{1+x^{2}}}+c_{1} . \\
v_{2}=\int\left(\frac{y_{1} R}{W}\right) d x=\int \frac{e^{x} \cdot \frac{e^{x}}{1+x^{2}}}{e^{2 x}} d x=\tan ^{-1} x+c_{2} .
\end{gathered}
$$

So,

$$
y=e^{x}\left[\ln \frac{1}{\sqrt{1+x^{2}}}+c_{1}\right]+x e^{x}\left[\tan ^{-1} x+c_{2}\right] .
$$

c) The constant multiples $c_{1} y_{1}$ and $c_{2} y_{2}$ or the sum $y_{1}+y_{2}$ are solutions if and only if an equation is a linear. But

$$
x y^{\prime}+y^{\prime}-\frac{y^{\prime 2}}{2}
$$

contains nonlinear element (quadratic $\frac{y^{\prime 2}}{2}$). Thus $c_{1} y_{1}$ and $c_{2} y_{2}$ or the sum $y_{1}+y_{2}$ are not solutions.

