$y=2 x^{\wedge} 3-9 x^{\wedge} 2+12 x+5$ it has minima at $x=2$ and maxima at $x=1$. My question is any other maxima or minima can be found except those point?

Solution

$y=2 x^{3}-9 x^{2}+12 x+5$.
Local extrema of differentiable functions can be found by Fermat's theorem, which states that they must occur at critical points. One can distinguish whether a critical point is a local maximum or local minimum by using the first derivative test, second derivative test, or higher-order derivative test, given sufficient differentiability.

According to a Definition of a Critical Number:
if

1) $y(x)$ is not differentiable at c, or
2) $y^{\prime}(x)=0$,
then c is a critical number of $y(x)$.
3) Function $y(x)=2 x^{3}-9 x^{2}+12 x+5$ is differentiable on the entire real line $((-\infty,+\infty))$.
4) $y^{\prime}(x)=6 x^{2}-18 x+12$.

Set $y^{\prime}(x)$ equal to 0 :
$y^{\prime}=6 x^{2}-18 x+12=0 \Rightarrow x^{2}-3 x+2=0 \Rightarrow x_{1}=1, x_{2}=2$ are critical numbers.
Using the Second Derivative Test, let's find the relative extrema for $y(x)=2 x^{3}-9 x^{2}+12 x+5$.
Using $y^{\prime \prime}=12 x-18=6(2 x-3)$ we can apply the Second Derivative Tests:

Point	$(c ; y(c))=(1 ; 10)$	$(c ; y(c))=(2 ; 9)$
Sign of $y^{\prime \prime}(x)$	$y^{\prime \prime}(1)=-6<0$	$y^{\prime \prime}(2)=6>0$
Conclusion	Relative maximum of the function	Relative minimum of the function

So, there are no other maxima or minima points except the above indicated ones.

