Answer on Question \#50806 - Math - Differential Calculus | Equations
 Question

$y=x+(1 / x)$. Can we find any other maxima or minima at any other point except $x=1$ and -1 ? I sketch the graph, at $\mathrm{x}=1$ there is a minima and $\mathrm{x}=-1$ there is a maxima, but cannot understand from graph why the maxima is less than the minima.

Solution

If $y^{\prime}\left(\mathrm{x}_{\mathrm{n}}\right)=0$ and $y^{\prime \prime}\left(\mathrm{x}_{\mathrm{n}}\right)<0$, then $\mathrm{y}(\mathrm{x})$ has a relative maximum at x_{n}.
If $y^{\prime}\left(\mathrm{x}_{\mathrm{n}}\right)=0$ and $y^{\prime \prime}\left(\mathrm{x}_{\mathrm{n}}\right)>0$, then $\mathrm{y}(\mathrm{x})$ has a relative minimum at x_{n}.
See http://en.wikipedia.org/wiki/Second derivative test.
Function $y=x+\frac{1}{x}$ is not defined at $x=0$.
$y=x+\frac{1}{x}$
$y^{\prime}=1-\frac{1}{x^{2}}=\frac{x^{2}-1}{x^{2}} ; y^{\prime}=0 \Rightarrow\left[\begin{array}{l}x_{1}=1 \\ x_{2}=-1\end{array}\right.$
$y^{\prime \prime}=\frac{2}{x^{3}}$
Hence, the critical values are $x_{1}=1$ and $x_{2}=-1$.
Now let us compute $y^{\prime \prime}\left(x_{n}\right)$:
$y^{\prime \prime}\left(x_{1}\right)=y^{\prime \prime}(1)=\frac{2}{1^{3}}=2>0$, so $\mathrm{y}(\mathrm{x})$ has a relative minimum at $\mathrm{x}_{1}=1$
$y^{\prime \prime}\left(x_{2}\right)=y^{\prime \prime}(-1)=\frac{2}{(-1)^{3}}=-2<0$, so $\mathrm{y}(\mathrm{x})$ has a relative maximum at $\mathrm{x}_{1}=-1$.
Global minimum and maximum are $-\infty$ and $+\infty$ respectively.

