Answer on Question \#50802 - Math - Calculus

Find the area between the curves $y=8-x^{2} / 2$ and $y=2-x / 2$.

Solution

Step 1 :

Given curves are $y=8-x^{2} / 2$ and $y=2-x / 2$.
Equating both the curves we get
$-\frac{x^{2}}{2}+\frac{x}{2}+6=0$
$x^{2}-x-12=0$
$D=1-4 \cdot(-1) \cdot 12=49$
$x_{1,2}=\frac{1 \pm \sqrt{49}}{2}$
$x=-3,4$ are the two intersecting points.
Step 2 : Visual representation of the region:

Step 3 : Area of the region bounded by these curves at intersection points is given by
$S=\int_{-3}^{4}\left(8-\frac{x^{2}}{2}-\left(2-\frac{x}{2}\right)\right) d x=\left.\left(8 x-\frac{x^{3}}{6}-2 x+\frac{x^{2}}{4}\right)\right|_{-3} ^{4}=\left.\left(-\frac{x^{3}}{6}+\frac{x^{2}}{4}+6 x\right)\right|_{-3} ^{4}=$

$$
\left(-\frac{4^{3}}{6}+\frac{4^{2}}{4}+24\right)-\left(-\frac{(-3)^{3}}{6}+\frac{(-3)^{2}}{4}+6(-3)\right)=\frac{343}{12}=28 \frac{7}{12}
$$

Answer: $28 \frac{7}{12}$.

