## Answer on Question \#50800 - Math - Calculus

## Question

Show that if $x$ is small, the $\sqrt{\frac{1+x}{1-x}}$ is approximated by $1+x+\frac{1}{2} x^{2}$. This sum is related to binomial expansion and there is a hint provided at the end of the question-that is,MULTIPLY BY $\sqrt{\frac{1+x}{1-x}}$ FIRST.

## Solution

Let's consider function $f(x)=\sqrt{\frac{1+x}{1-x}}$ at the point $x=0$. Since $f(x)$ is more than 2 times differentiable at the point $x=0$ then due to the Taylor's theorem $f(x)-P_{2}(x)=o\left(|x|^{2}\right), x \rightarrow 0$, where $P_{2}(x)$ is the 2-th order Taylor polynomial.

$$
P_{2}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2} .
$$

Let's compute the first and the second order derivatives of $f(x)$ :

$$
\begin{aligned}
& f^{\prime}(x)=\left(\sqrt{\frac{1+x}{1-x}}\right)^{\prime}=\frac{1}{2} \sqrt{\frac{1-x}{1+x}} \frac{(1-x)+(1+x)}{(1-x)^{2}}=\sqrt{\frac{1-x}{1+x}} \frac{1}{(1-x)^{2}}=\sqrt{\frac{1}{(1+x)(1-x)^{3}}}=\left((1+x)(1-x)^{3}\right)^{-\frac{1}{2}} ; \\
& f^{\prime \prime}(x)=\left(\left((1+x)(1-x)^{3}\right)^{-\frac{1}{2}}\right)^{\prime}=-\frac{1}{2}\left((1+x)(1-x)^{3}\right)^{-\frac{3}{2}}\left((1-x)^{3}-3(1+x)(1-x)^{2}\right)
\end{aligned}
$$

Thus, $P_{2}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}=\sqrt{\frac{1+0}{1-0}}+\left((1+0)(1-0)^{3}\right)^{-\frac{1}{2}} x-$ $-\frac{1}{2!} \frac{1}{2}\left((1+0)(1-0)^{3}\right)^{-\frac{3}{2}}\left((1-0)^{3}-3(1+0)(1-0)^{2}\right) x^{2}=1+x+\frac{1}{2} x^{2}$.
As we say earlier, $f(x)-\left(1+x+\frac{1}{2} x^{2}\right)=o\left(|x|^{2}\right), x \rightarrow 0$, this means that $f(x)$ is approximated by $1+x+\frac{1}{2} x^{2}$ for the small $x$.

