Answer on Question #50739 - Math - Differential Calculus | Equations

Solve the initial value problem: $d^2x/dt^2 + 2 dy/dx - 3x = 0$, X(2pie) = 1, $x^2.(2pie) = 13$

Solution

$$x'' + 2x' - 3x = 0$$
, $x(2\pi) = 1$, $x'(2\pi) = 13$.

Characteristic equation is $r^2 + 2r - 3 = 0$, hence its solutions are

$$r = -3$$
 or $r = 1$.

So,
$$x(t) = c_1 e^{-3t} + c_2 e^t$$
, hence $x'(t) = -3c_1 e^{-3t} + c_2 e^t$.

From conditions

$$x(2\pi) = 1, \qquad x'(2\pi) = 13$$

obtain the following system of linear equations with respect to c_1 and c_2 , which to be solved by Cramer'smethod :

$$ho > \left\{ egin{align*} c_1 e^{-6\pi} + c_2 e^{2\pi} &= 1 \ -3c_1 e^{-6\pi} + c_2 e^{2\pi} &= 13 \end{array}
ight.
ight.
ight. \left\{ egin{align*} c_1 &= rac{ig| 1 & e^{2\pi} ig| }{ | 13 & e^{2\pi} ig| } \ \hline -3e^{-6\pi} & e^{2\pi} ig| } \ c_2 &= rac{ig| e^{-6\pi} & 1 ig| }{ | -3e^{-6\pi} & e^{2\pi} ig| } \ \hline -3e^{-6\pi} & e^{2\pi} ig| } \ \hline -3e^{-6\pi} & e^{2\pi} ig| } \end{array}
ight.$$

$$\rightarrow \begin{cases}
c_1 = \frac{-12e^{2\pi}}{4e^{-4\pi}} \\
c_2 = \frac{16e^{-6\pi}}{4e^{-4\pi}}
\end{cases}
\rightarrow \begin{cases}
c_1 = -3e^{6\pi} \\
c_2 = 4e^{-2\pi}
\end{cases}$$

Thus, $x(t) = -3e^{6\pi-3t} + 4e^{t-2\pi}$ is the solution to the initial value problem.

www.AssignmentExpert.com