Answer on Question #50731 - Math - Algebra

The greater of the two angles A = $2\tan^{-1}((2\sqrt{2})-1)$ and B= $3\sin^{-1}(1/3) + \sin^{-1}(3/5)$ is?

Solution:

Remember that $\sqrt{2} \approx 1.4$. Because $(2\sqrt{2}-1)^2 = 8 - 4\sqrt{2} + 1 = 9 - 4\sqrt{2} > 3 \Leftrightarrow$ $6 > 4\sqrt{2} \Leftrightarrow$ raising to the second power $\Leftrightarrow 36 > 32$, which is true, it follows that $2\sqrt{2} - 1 > \sqrt{3}$. According to this fact and $\tan \pi/3 = \sqrt{3}$, obtain that $(2\sqrt{2}-1) > \tan \pi/3$, then $2\tan^{-1}(2\sqrt{2}-1) > 2\pi/3$, because the inverse tangent function is strictly increasing function. Thus, $A > 2\pi/3$.

Remember that $sin_3\alpha = 3sin\alpha - 4sin^3\alpha$, then $3\alpha = sin^{-1}[3sin\alpha - 4sin^3\alpha]$. We have $\alpha = sin^{-1}\frac{1}{3}$ and $sin\alpha = \frac{1}{3}$ Thus,

$$B = 3\sin^{-1}\frac{1}{3} + \sin^{-1}\frac{3}{5} = \sin^{-1}\left[3\left(\frac{1}{3}\right) - 4\left(\frac{1}{3}\right)^3\right] + \sin^{-1}\frac{3}{5} = \sin^{-1}\frac{23}{27} + \sin^{-1}\frac{3}{5}$$

Note that $\frac{23}{27} < \frac{\sqrt{3}}{2}$ and $\frac{3}{5} < \frac{\sqrt{3}}{2}$, because $(23 \cdot 2)^2 < (27\sqrt{3})^2$ and $(3 \cdot 2)^2 < (5\sqrt{3})^2$, which is equivalent to 2116 < 2187 and 36 < 75, true inequalities. So $sin^{-1}\frac{23}{27} + sin^{-1}\frac{3}{5} < sin^{-1}\frac{\sqrt{3}}{2} + sin^{-1}\frac{\sqrt{3}}{2} = \pi/3 + \pi/3 = 2\pi/3$, because the inverse sine function is strictly increasing. Thus, $A > 2\pi/3$, $B < 2\pi/3$, so A > B. **Answer:** A > B.