Answer on Question \#50714 - Math - Differential Calculus | Equations

How to find maxima and minima. Process

1. to find x where $d y / d x=0$. let the $x=a$
2. then find $\mathrm{d} 2 \mathrm{y} / \mathrm{dx} 2$
3.if $\mathrm{d} 2 \mathrm{y} / \mathrm{dx} 2>0$ at $\mathrm{x}=\mathrm{a}$ then we will find a minimum for $\mathrm{x}=\mathrm{a}$
4.if $\mathrm{d} 2 \mathrm{y} / \mathrm{dx} 2<0$ at $\mathrm{x}=\mathrm{a}$ then we will find a maximum for $\mathrm{x}=\mathrm{a}$
5.if $\mathrm{d} 2 \mathrm{y} / \mathrm{dx} 2=0$ at $\mathrm{x}=\mathrm{a}$ then we will have to proceed to the $\mathrm{d} 3 \mathrm{y} / \mathrm{dx} 3$
6.if $d 3 y / d x 3 \neq 0$ at $x=a$, we will not find any maxima or minima.
7.if $d 3 y / d x 3=0$ at $x=a$ then we will proceed to $d 4 y / d x 4$ and if $d 4 y / d x 4>0$ at $x=a$ then it's minimum and if $d 4 y / d x 4<0$ at $x=a$ then it is maximum.

Please explain the rule 6 above. Why will we not find any maxima or minima in that case? Please explain with figure and example.

Solution.

6. Let P be the Taylor polynomial of $y(x)$ around $x=a$ of order 3 .

Then, $P(x)=k(x-a)^{3}\left(\right.$ because $\left.y^{\prime}(a)=y^{\prime \prime}(a)=0\right)$
and so $y(x)=k(x-a)^{3}+O(x-a)^{4}$.
It follows that sufficiently close to $x=a y(x)$ has the same sign as $k(x-a)^{3}$ and behaves like $k(x-a)^{3}$ and strictly increasing $(k>0)$ or decreasing $(\boldsymbol{k}<\mathbf{0})$ and therefore has not maxima or minima at $\boldsymbol{x}=\boldsymbol{a}$.
7. Let P be the Taylor polynomial of $\mathrm{y}(\mathrm{x})$ around $\boldsymbol{x}=\boldsymbol{a}$ of order 4 .

Then, $P(x)=k(x-a)^{4}\left(\right.$ because $\left.y^{\prime}(a)=y^{\prime \prime}(a)=y^{\prime \prime \prime}(a)=0\right)$
and so $y(x)=k(x-a)^{4}+O(x-a)^{5}$
It follows that sufficiently close to $\boldsymbol{x}=\boldsymbol{a} \boldsymbol{y}(\boldsymbol{x})$ behaves like $\boldsymbol{k}(\boldsymbol{x}-\boldsymbol{a})^{4}$ and has maxima $(k<0)$ or minima $(k>0)$.

