Answer on Question \#50713 - Math - Calculus

please provide me some problem, where third derivative or more than that is used to find maxima and minima. and please solve one problem like this.

Solution

Let $y(x)=x^{4}+x^{5}, y^{\prime}=4 x^{3}+5 x^{4}, y^{\prime \prime}=12 x^{2}+20 x^{3}$,
$y^{\prime \prime \prime}=24 x+60 x^{2}, y^{I V}=24+120 x$.
Solve $y^{\prime}=0$, that is, $4 x^{3}+5 x^{4}=0$, hence $x^{3}(4+5 x)=0$ and finally $x=0$ or $x=-\frac{4}{5}$ are critical points. Thus, $y^{\prime}(0)=0$ and $y^{\prime}\left(-\frac{4}{5}\right)=0$.

Evaluate $y^{\prime \prime}\left(-\frac{4}{5}\right)=12\left(-\frac{4}{5}\right)^{2}+20\left(-\frac{4}{5}\right)^{3}=\frac{12 \cdot 16-20 \cdot 64 / 5}{25}=\frac{12 \cdot 16-4 \cdot 64}{25}<0$, hence $x=-\frac{4}{5}$ is a local maximum.

Next, $\boldsymbol{y}^{\prime \prime}(0)=0$. To classify $\boldsymbol{x}=\mathbf{0}$, further research is required.
So, $y(0)=y^{\prime}(0)=y^{\prime \prime}(0)=y^{\prime \prime \prime}(0)=0, y^{I V}(0)>0$.
As we can see, $n=4$ is even and $\boldsymbol{y}^{I V}(0)>0$. Sufficiently close to $x=0, y(x)$ strictly decreases when $x \rightarrow 0$ from the left and from the right and therefore function $y(x)=x^{4}+x^{5}$ has local minimum at $x=0$.

In case of odd order n, point cannot be a point of extremum.

