Answer to Question 50683, Math, Differential Calculus | Equations
Why do we use $x=0$ to find $f(0)$ in Maclaurin series? Why another numbers are not used? And why $f(0)$ is needed?

The answer to this question comes from the Taylor's theorem. If the function is infinitely differentiated in the neighborhood of the point $x=x_{0}$, then it can be represented as

$$
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \frac{\left(x-x_{0}\right)}{1!}+f^{\prime \prime}\left(x_{0}\right) \frac{\left(x-x_{0}\right)^{2}}{2!}+. .+f^{(k)}\left(x_{0}\right) \frac{\left(x-x_{0}\right)^{k}}{k!}+. .
$$

This theorem is a generalization of Lagrange's theorem

$$
f(x)-f\left(x_{0}\right)=f^{\prime}(\xi)\left(x-x_{0}\right)
$$

Thus, Maclaurin series $\left(x_{0}=0\right)$ is only a particular case of Taylor series. Saying rigorously, if we use $x=x_{0}$, we must call it Taylor series (not Maclaurin series).

Actually, we can use any point $x=x_{0}$ to write an expansion, but only when this function at the point satisfies the Taylor's theorem.

