Find the value of b for which the equation
$\left(y e^{\wedge} 2 x y+x\right) d x+b x e^{\wedge} 2 x y d y=0$
is exact, and hence solve it for that value of b.

Solution

$\left(y e^{2 x y}+x\right)+b x e^{2 x y} \frac{d y}{d x}=0$
If the differential equation is exact, then

$$
\begin{aligned}
& \frac{\partial}{\partial x}\left(b x e^{2 x y}\right)=\frac{\partial}{\partial y}\left(y e^{2 x y}+x\right) \rightarrow b e^{2 x y}+2 b x y e^{2 x y}=e^{2 x y}+2 x y e^{2 x y} \rightarrow \\
& \rightarrow b(1+2 x y)=1+2 x y \rightarrow b=1 .
\end{aligned}
$$

So, the exact equation is the following:
$\left(y e^{2 x y}+x\right)+x e^{2 x y} \frac{d y}{d x}=0$
Solution of this exact equation is $\varphi(x, y)=C$,
where $\frac{\partial \varphi}{\partial x}=y e^{2 x y}+x, \frac{\partial \varphi}{\partial y}=x e^{2 x y}, C$ is an arbitrary real constant.
Thus, $\varphi(x, y)=\int x e^{2 x y} d y+h(x)=\frac{e^{2 x y}}{2}+h(x)$.
From this formula and the previous one obtain
$\frac{\partial \varphi}{\partial x}=y e^{2 x y}+h^{\prime}(x)=y e^{2 x y}+x \rightarrow h(x)=\frac{x^{2}}{2}$,
$\varphi(x, y)=\frac{e^{2 x y}}{2}+\frac{x^{2}}{2}$.
The solution of the equation is $e^{2 x y}+x^{2}=C_{1}$, hence $y=\frac{\ln \left(c_{1}-x^{2}\right)}{2 x}, x \neq 0$.

