Answer on Question \#50669-Math - Differential calculus | Equations

Question

Find the differential equation of the family of curves $y=e^{x}(A \cos x+B \sin x)$ where A and B are arbitrary constants and hence solve the equation.

Solution

Method 1
From the theory of ordinary differential equations the following fact is known:
if $y=e^{x}(A \cos x+B \sin x)$ is the solution to differential equation, then the characteristic equation has complex roots $\lambda_{1,2}=1 \pm i$. We obtain characteristic equation of the original differential equation: $(\lambda-1-i)(\lambda-1+i)=0 \Leftrightarrow(\lambda-1)^{2}=-1 \Leftrightarrow \lambda^{2}-2 \lambda+2=0$
Therefore the original differential equation is $y^{\prime \prime}-2 y^{\prime}+2 y=0$.
If we want to solve it, then we must repeat all previous steps.
Let's construct characteristic equation of the original differential equation: $\lambda^{2}-2 \lambda+2=0$. It is easy to see that solutions of the characteristic equation are $\lambda_{1,2}=1 \pm i$. Since $\lambda_{1,2}=1 \pm i$ are complex numbers with real part 1 and image part ± 1 then the family of curves $y=e^{x}(A \cos x+B \sin x)$, where A and B are arbitrary real constants, is solution of differential equation $y^{\prime \prime}-2 y^{\prime}+2 y=0$.

Method 2

To find the differential equation of the family of curves, differentiate $y=e^{x}(A \cos x+B \sin x)$:
$y^{\prime}=e^{x}\left(A \cos x+B \sin x-A \sin x+B \cos x=e^{x} \cos x(A+B)+e^{x} \sin x(B-A)\right.$
$y^{\prime \prime}=e^{x}(A \cos x+B \sin x-2 A \sin x+2 B \cos x-A \cos x-B \sin x)=2 B e^{x} \cos x-2 A e^{x} \sin x$
Suppose that the family of curves $y=e^{x}(A \cos x+B \sin x)$ satisfies equation $y^{\prime}+\mu y=0$, then $\frac{A+B}{A}=\frac{B-A}{B}$, which gives infinitely many cases $A^{2}+B^{2}=1$, because A and B are arbitrary constants, so we failed to construct the first-order linear differential equation with constant coefficients.
Solve the equation $y^{\prime \prime}+\alpha y^{\prime}+\beta y=0$ for α, β :
$e^{x} \cos x(2 B+\alpha(A+B)+\beta A)+e^{x} \sin x(-2 A+\alpha(B-A)+\beta B)=0$
for arbitrary real x, hence obtain the system of equations
$\left\{\begin{array}{c}(A+B) \alpha+A \beta=-2 B \\ (B-A) \alpha+B \beta=2 A\end{array}\right.$
$\Delta=\left|\begin{array}{ll}A+B & A \\ B-A & B\end{array}\right|=A B+B^{2}-A B+A^{2}=A^{2}+B^{2}, \Delta_{1}=\left|\begin{array}{cc}-2 B & A \\ 2 A & B\end{array}\right|=-2 B^{2}-2 A^{2}=-2\left(A^{2}+B^{2}\right)$,
$\Delta_{2}=\left|\begin{array}{cc}A+B & -2 B \\ B-A & 2 A\end{array}\right|=2 A^{2}+2 A B+2 B^{2}-2 A B=2\left(A^{2}+B^{2}\right)$.
By Cramer's rule, obtain the unique solution
$\alpha=\frac{\Delta_{1}}{\Delta}=\frac{-2\left(A^{2}+B^{2}\right)}{A^{2}+B^{2}}=-2$,
$\beta=\frac{\Delta_{2}}{\Delta}=\frac{2\left(A^{2}+B^{2}\right)}{A^{2}+B^{2}}=2$.
Finally the differential equation will be $y^{\prime \prime}-2 y^{\prime}+2 y=0$.
Answer: $y^{\prime \prime}-2 y^{\prime}+2 y=0$.

