Answer on Question \#50620 - Math - Combinatorics | Number Theory

Question

There are 5 students of department A and 5 of department B. How many arrangements are possible around a circular table where 2 students of department B will not sit beside?

I solve this like this.

Students of department B can sit at the middle of 2 students of department A. So there are 5 empty places between the students of department A. So in this 5 place 5 students of department B can sit in 5 ! Ways.

And the students of department A can change their position in (5-1)! $=4$! ways.
So in total it is $5!^{*} 4$! That's it. My question is we know in circular permutation its ($n-1$)! So ido (5-1)! for department A students. Why it is not done for department B students. They also in a circle. Please explain

Solution

We know in circular permutation there are ($n-1$)! different arrangements, but at first we should choose A or B department $(n-1)$!

At second we should count not only circular permutation, but relative position of department A from department B (we have n positions for the first student of department A):

$$
n(n-1)!=n!
$$

The total number of different arrangements is $n!(n-1)$!
Example. When $n=2$ there is $(2-1)!=1$ arrangement in circular permutation for department A and $(2-1)!=1$ arrangement in circular permutation for department B. Nevertheless, relative position of department A from department B gives 2 arrangements. So,

$$
2!(2-1)!=2
$$

