Answer on Question \#50592 - Math - Calculus

Question

The area, $A \mathrm{~cm} 2$, of a circle increases at a constant rate of $2 \mathrm{~cm} 2 / \mathrm{s}$. If the initial area of A is 1 cm 2 , show that the radius of the circle at time t is given by $r=\operatorname{sqrt}(2 t+1 / \mathrm{pi})$

Solution

It is well-known that the area of a circle at time t is given by

$$
\begin{equation*}
A(t)=\pi r^{2}(t) \tag{1}
\end{equation*}
$$

where $r(t)$ is the radius of the circle at time t.
In our case the initial area is

$$
A(0)=1 \mathrm{~cm}^{2}
$$

By statement of question, the area of the circle increases at a constant rate of $2 \mathrm{~cm}^{2} / \mathrm{s}$, so after 1 second obtain $A(1)=1+2=3\left(\mathrm{~cm}^{2}\right)$, after 2 seconds $A(2)=1+2 \cdot 2=5\left(\mathrm{~cm}^{2}\right)$ and so on.

The formula for the area after t seconds is given by

$$
\begin{equation*}
A(t)=1+2 t\left(\mathrm{~cm}^{2}\right) \tag{2}
\end{equation*}
$$

Then equate expressions for $A(t)$ from (1) and (2), which gives the following equation:

$$
\begin{equation*}
1+2 t=\pi r^{2}(t) \tag{3}
\end{equation*}
$$

Solve equation (3) for $r(t)$:

$$
r(t)=\sqrt{\frac{1+2 t}{\pi}}
$$

