Answer on Question \#50591 - Math - Calculus

Question

The volume, $V\left(\mathrm{~cm}^{3}\right)$, of a cone height h is

$$
V=\pi \frac{h^{3}}{12}
$$

If h increases at a constant rate of $0.2 \mathrm{~cm} / \mathrm{sec}$ and the initial height is 2 cm , express V in terms of t and find the rate of change of V at time t.

Solution:

We know that h increases at a constant rate of $0.2 \mathrm{~cm} / \mathrm{sec}$, it means that

$$
\frac{d h}{d t}=0.2(\mathrm{~cm} / \mathrm{sec})
$$

Integrate both sides of this equality with respect to t in order to find

$$
h(t)=\int 0.2 d t=0.2 t+c
$$

Because the initial height is

$$
h(0)=2(\mathrm{~cm}),
$$

then

$$
\begin{gathered}
h(0)=0.2 \cdot 0+c=2 \\
c=2
\end{gathered}
$$

So

$$
h(t)=0.2 t+2=0.2(t+10)
$$

Thus, the volume of cone expressed in terms of t is

$$
V(t)=\pi \frac{h^{3}}{12}=\pi \frac{(0.2(t+10))^{3}}{12}=\frac{\pi}{1500}(t+10)^{3}\left(\mathrm{~cm}^{3}\right)
$$

And finally the rate of change of V at time t is the derivative of $V(t)$ with respect to t :

$$
\begin{gathered}
\frac{d V}{d t}=\frac{d}{d t}\left(\frac{\pi}{1500}(t+10)^{3}\right)=\frac{\pi}{1500} \cdot \frac{d}{d t}\left((t+10)^{3}\right)=\frac{\pi}{1500} \cdot 3(t+10)^{2}= \\
=\frac{\pi}{500}(t+10)^{2}\left(\mathrm{~cm}^{3} / \mathrm{sec}\right)
\end{gathered}
$$

Answer: $\quad V(t)=\frac{\pi}{1500}(t+10)^{3}\left(\mathrm{~cm}^{3}\right), \frac{d V}{d t}=\frac{\pi}{500}(t+10)^{2}\left(\mathrm{~cm}^{3} / \mathrm{sec}\right)$

