Answer on Question \#50588 - Math - Calculus

Question

A rectangle has sides of length $x \mathrm{~cm}$ and $(2 x-4) \mathrm{cm}$ and the length $x \mathrm{~cm}$ at time t seconds is given by $x=2+3 t,(t \geq 0)$. Show that the area, $A \mathrm{~cm}^{\wedge} 2$, the rectangle, in terms of t is $A=12 t+18 t^{2}$. Hence find the rate of change of the area at the instant when $t=2$.

Solution

It is known that the area of rectangle with lengths of sides $x \mathrm{~cm}$ and $(2 x-4) \mathrm{cm}$ is
$A=x(2 x-4) \mathrm{cm}^{2}$.
Since $x(t)=2+3 t$, then
$A(t)=x(t)(2 x(t)-4)=(2+3 t)(2(2+3 t)-4)=(2+3 t)(4+6 t-4)=(2+3 t) 6 t=12 t+18 t^{2}$.
The rate of changing the area of rectangle is the derivative of $A(t)$ with respect to t :
$A^{\prime}(t)=\left(12 t+18 t^{2}\right)^{\prime}=12+36 t$.
Then at moment $t=2$ it will be $A^{\prime}(2)=12+36 \cdot 2=84 \mathrm{~cm}^{2} / \mathrm{s}$.
Answer. $84 \mathrm{~cm}^{2} / \mathrm{s}$.

