Answer on Question \#50587 - Math - Calculus

The volume, $\mathrm{V} \mathrm{cm}^{3}$, of a cube at time t seconds is given by

$$
V=\left(4+\frac{1}{3} t\right)^{3}
$$

The rate at which its volume is increasing at the instant when $t=2$.

Solution

The rate of change of volume V is

$$
\frac{d V}{d t}(t)=\frac{d}{d t}\left(\left(4+\frac{1}{3} t\right)^{3}\right)=3\left(4+\frac{1}{3} t\right)^{2} \frac{d}{d t}\left(4+\frac{1}{3} t\right)=3\left(4+\frac{1}{3} t\right)^{2} \frac{1}{3}=\left(4+\frac{1}{3} t\right)^{2}
$$

The rate at which its volume is increasing at the instant when $t=2$ is

$$
\frac{d V}{d t}(2)=\left(4+\frac{1}{3} 2\right)^{2}=\left(\frac{14}{3}\right)^{2}=21.78 \frac{\mathrm{~cm}^{3}}{s}
$$

Answer: $21.78 \frac{\mathrm{~cm}^{3}}{\mathrm{~s}}$.

