Answer on Question \#50586-Math - Calculus

Question

The amount of water, $V \mathrm{~cm}^{3}$, in a leaking tank at time t seconds is given by $V(t)=(15-t)^{3}$ for $0 \leq t \leq 15$. Find the rate at which the water leaves the tank when $t=4$.

Solution.

First of all, the rate of changing the amount of water in a leaking tank at time t seconds is the derivative of the amount of water, $V(t)$, with respect to t. To find it, apply the chain rule:
$V^{\prime}(t)=\left((15-t)^{3}\right)^{\prime}=3(15-t)^{2}(15-t)^{\prime}=-3(15-t)^{2}$.
Then at moment $t=4$ it would be the following:
$V^{\prime}(4)=-3(15-4)^{2}=-3 \cdot 121=-363 \mathrm{~cm}^{3} / \mathrm{s}$. Thus, it leaves the tank with the rate of $363 \mathrm{~cm}^{3} / \mathrm{s}$. Answer: $363 \mathrm{~cm}^{3} / \mathrm{s}$.

