Answer on Question #50586 - Math - Calculus

Question

The amount of water, V cm^3 , in a leaking tank at time t seconds is given by $V(t) = (15-t)^3$ for $0 \le t \le 15$. Find the rate at which the water leaves the tank when t = 4.

Solution.

First of all, the rate of changing the amount of water in a leaking tank at time t seconds is the derivative of the amount of water, V(t), with respect to t. To find it, apply the chain rule:

$$V'(t) = ((15-t)^3)' = 3(15-t)^2(15-t)' = -3(15-t)^2.$$

Then at moment t = 4 it would be the following:

 $V'(4) = -3(15-4)^2 = -3 \cdot 121 = -363 \text{ cm}^3 / \text{s}$. Thus, it leaves the tank with the rate of $363 \text{ cm}^3 / \text{s}$.

Answer: $363 cm^3 / s$.