Answer on Question \#50585 - Math - Calculus

Question

The radius, $r \mathrm{~cm}$, of a spherical balloon at a time t seconds is given by $r=3+\frac{2}{1+t}$.
What is the initial radius? Find the rate of change of r (w.r.t.t) when $t=3$

Solution

The initial radius is evaluated when $t=0$:

$$
r(0)=3+\frac{2}{1+0}=3+2=5(\mathrm{~cm})
$$

The rate of change of r (w.r.t.t) is the following:

$$
\frac{d r(t)}{d t}=\frac{d}{d t}\left(3+\frac{2}{1+t}\right)=\frac{d}{d t}(3)+\frac{d}{d t}\left(\frac{2}{1+t}\right)=0+2 \cdot\left(-\frac{1}{(1+t)^{2}}\right)=-\frac{2}{(1+t)^{2}}
$$

The rate of change of r (w.r.t.t) when $t=3$ is given by

$$
\left.\frac{d r(t)}{d t}\right|_{t=3}=-\frac{2}{(1+3)^{2}}=-\frac{2}{4^{2}}=-\frac{2}{16}=-0.125\left(\frac{c m}{s}\right) .
$$

Answer: $r(0)=5 \mathrm{~cm},\left.\frac{d r(t)}{d t}\right|_{t=3}=-0.125 \frac{\mathrm{~cm}}{\mathrm{~s}}$

