Answer on Question \#50584 - Math - Calculus

Question

The length, $I \mathrm{~mm}$ of an elastic string at time t seconds is given by $\mathrm{I}=\mathrm{t}^{\wedge} 3 / 3-4 \mathrm{t}+10$. Find the instants (that is, the value of t) when:
a) The length is increasing at a rate of $5 \mathrm{~mm} / \mathrm{Sec}$
b) The length is decreasing at a rate of $4 \mathrm{~mm} / \mathrm{Sec}$

Solution

$$
l=\frac{t^{3}}{3}-4 t+10
$$

Evaluate the derivative of l with respect to t :

$$
\frac{d l}{d t}=t^{2}-4
$$

a)

$$
\frac{d l}{d t}=5
$$

Therefore,

$$
\begin{gathered}
t^{2}-4=5 \\
t^{2}=9
\end{gathered}
$$

$t=3 \mathrm{sec}$, because instant (value of t) is non-negative
b)

$$
\begin{gathered}
\frac{d l}{d t}=-4 \\
t^{2}-4=-4 \\
t^{2}=0 \\
t=0 \mathrm{sec}
\end{gathered}
$$

Thus, it is initial moment.

Answer:

a) $t=3 \mathrm{sec}$
b) $t=0 \mathrm{sec}$.

