Answer on Question \#50583 - Math - Calculus

Task:
The radius $r(\mathrm{~cm})$ of a circle at time t seconds is given by $r=9 t-t \wedge 3$. At each of the following instants, find the rate of change of the radius (w.r.t.t) and state whether the radius is increasing or decreasing at these instants.
a) $t=1$
b) $t=2$
c) $t=2.5$

Answer:

The rate of change of the radius is calculated by $\frac{d r}{d t}=9-3 \mathrm{t}^{2}(\mathrm{~cm})$.
So let $t_{1}=1, t_{2}=2, t_{3}=2.5$.
If $\frac{d r}{d t}\left(t_{n}\right)>0$, then the radius is increasing at t_{n} instant.
If $\frac{d r}{d t}\left(t_{n}\right)<0$, then the radius is decreasing at t_{n} instant.
Evaluate
$\frac{d r}{d t}\left(t_{1}\right)=\frac{d r}{d t}(1)=9-3 \cdot 1^{2}=9-3=6>0$,
$\frac{d r}{d t}\left(t_{2}\right)=\frac{d r}{d t}(2)=9-3 \cdot 2^{2}=-3<0$,
$\frac{d r}{d t}\left(t_{3}\right)=\frac{d r}{d t}(2.5)=9-3 \cdot 2.5^{2}=9-3(2+0.5)^{2}=9-3 \cdot 2^{2}-3 \cdot 2 \cdot 2 \cdot 0.5-3 \cdot 0.5^{2}=$
$=-3-6-0.75=-9.75<0$
Thus, the radius is increasing at $t=1$ and decreasing at $t=2, t=2.5$.

