Answer on Question \#50469 - Math - Calculus

The maximum value of $[x(x-1)+1] 1 / 3,0 \leq x \leq 1$ is ?

Solution

Function $f(x)=\frac{1}{3}(x(x-1)+1)$ is continuous on the segment $[0 ; 1]$ and differentiable at all points of this segment except, possibly, finitely many points. Then the largest and the smallest values of $f(x)$ on $[0 ; 1]$ belong to the set consisting of $f(0), f(1)$, and the values $f\left(x_{i}\right)$, where $x_{i} \in(0 ; 1)$ are the points at which $f^{\prime}(x)$ is either equal to zero or does not exist (is infinite).

$$
\begin{gathered}
\text { Evaluate } f(0)=\frac{1}{3}(0(0-1)+1)=\frac{1}{3}(0+1)=\frac{1}{3}, \\
f(1)=\frac{1}{3}(1(1-1)+1)=\frac{1}{3}(0+1)=\frac{1}{3}, \text { i.e. } f(0)=f(1)=\frac{1}{3} . \\
f^{\prime}(x)=\left(\frac{1}{3}(x(x-1)+1)\right)^{\prime}=\mid \text { additive property } \left\lvert\,=\frac{1}{3}(x(x-1))^{\prime}+\frac{1}{3}(1)^{\prime}=\frac{1}{3}(x(x-1))^{\prime}+0\right. \\
=\frac{1}{3}(x(x-1))^{\prime}=\mid \text { the derivative of the product } \left\lvert\,=\frac{1}{3}(x)^{\prime}(x-1)+\frac{1}{3} x(x-1)^{\prime}\right. \\
=\frac{1}{3}(x-1)+\frac{1}{3} x=\frac{2}{3} x-\frac{1}{3}=\frac{2 x-1}{3}=0, \\
\text { hence } 2 x-1=0, \text { so } x=\frac{1}{2} .
\end{gathered}
$$

Calculate $f\left(\frac{1}{2}\right)=\frac{1}{3}\left(\frac{1}{2}\left(\frac{1}{2}-1\right)+1\right)=\frac{1}{3}\left(-\frac{1}{2} \cdot \frac{1}{2}+1\right)=\frac{1}{3}\left(-\frac{1}{4}+1\right)=\frac{1}{3} \cdot \frac{3}{4}=\frac{1}{4}<\frac{1}{3}$.
Thus, the maximum of $\frac{1}{4}$ and $\frac{1}{3}$ is $\frac{1}{3}$, that is why the maximum value of $f(x)=\frac{1}{3}(x(x-1)+1), 0 \leq$

$$
x \leq 1, \text { is } \frac{1}{3}, \text { because } f(0)=f(1)=\frac{1}{3}
$$

