1. Let G be the region enclosed by the curves $y=4 / x$ and $y=5-x$

Find the volume of the solid generated by rotating the region G about the x-axis.
Answer:
Here's the picture of the region G:

The intersections of the two curves are at $(1,4)$ and $(4,1)$.
For revolution about the x-axis, we use the method of washers. The outside radius is the top curve $\frac{x}{4}$ and the inside radius is the bottom curve $5-x$. Thus, the volume V is given by

$$
\begin{aligned}
& V=\pi \int_{1}^{4}\left[(5-x)^{2}-\left(\frac{4}{x}\right)^{2}\right] d x=\pi \int_{1}^{4}\left[(5-x)^{2}-\frac{16}{x^{2}}\right] d x \\
&=\pi\left(-\int_{1}^{4}(5-x)^{2} d(5-x)-16 \int_{1}^{4} \frac{1}{x^{2}} d x\right)=\pi\left\{-\left[\frac{(5-x)^{3}}{3}\right]_{1}^{4}-16\left[\frac{1}{x}\right]_{1}^{4}\right\}=9 \pi
\end{aligned}
$$

www.assignmentexpert.com

