Answer on Question \#50307 - Math - Algebra

$x p+3 y p=2(z-x 2 p 2)$ solve this equation.

Solution

$$
x p+y p=2\left(z-x^{2} p^{2}\right)
$$

Solve for x

(other values of y, z, p should be known in order to get a definite solution): $2 p^{2} x^{2}+p x+(y p-2 z)=0$ is a quadratic equation with respect to x, when $p \neq 0$;
its discriminant is $D 1=p^{2}-4 \cdot 2 p^{2}(y p-2 z)=p^{2}-8 y p^{3}+16 z p^{2}$
Solutions are the following:
If $p \neq 0$, then

$$
x=\frac{-p \pm \sqrt{D 1}}{2 \cdot 2 p^{2}}=\frac{-p \pm p \sqrt{1-8 y p+16 z}}{4 p^{2}}=-\frac{1}{4 p}-\frac{1}{4 p} \sqrt{1-8 y p+16 z} ;-\frac{1}{4 p}-\frac{1}{4 p} \sqrt{1-8 y p+16 z} .
$$

If $p=0$, then $0=2 z$, hence
$x=C$ is an arbitrary real number, $y=E$ is an arbitrary real number, $z=0$.

Solve for y

(other values of x, z, p should be known in order to get a definite solution):
$x p+y p=2\left(z-x^{2} p^{2}\right)$ is a linear equation with respect to y.
If $p \neq 0$, then $x p+y p=2\left(z-x^{2} p^{2}\right) \Rightarrow \mid$ subtract $x p$ from both sides $\mid \Rightarrow$
$\Rightarrow y p=2\left(z-x^{2} p^{2}\right)-x p \Rightarrow \mid$ divide both sides by $p \mid \Rightarrow$
$y=\frac{2\left(z-x^{2} p^{2}\right)-x p}{p}=\frac{2 z}{p}-2 x^{2} p-x$
If $p=0$, then $0=2 z$, hence
$y=E$ is an arbitrary real number, $x=C$ is an arbitrary real number, $z=0$.

Solve for Z

(other values of x, y, p should be known in order to get a definite solution):
$x p+y p=2\left(z-x^{2} p^{2}\right)$ is a linear equation with respect to z;
$\Rightarrow \mid$ add $2 x^{2} p^{2}$ to both sides $\left|\Rightarrow x p+y p+2 x^{2} p^{2}=2 z \Rightarrow\right|$ divide both sides by $2 \mid \Rightarrow$ $\frac{x p+y p+2 x^{2} p^{2}}{2}=z$, i.e. $z=\frac{x p+y p+2 x^{2} p^{2}}{2}$

Solve for p

(other values of x, y, z should be known in order to get a definite solution):
$2 x^{2} p^{2}+(x+y) p-2 z=0$ is a quadratic equation with respect to p, when $x \neq 0$;
its discriminant is $D 2=(x+y)^{2}-4 \cdot 2 x^{2} \cdot(-2 z)=x^{2}+y^{2}+2 x y+16 x^{2} z$
Solutions are the following:
If $x \neq 0$, then
$p=\frac{-(x+y) \pm \sqrt{D 2}}{2 \cdot 2 x^{2}}=\frac{-(x+y) \pm \sqrt{x^{2}+y^{2}+2 x y+16 x^{2} z}}{4 x^{2}}=\frac{-(x+y)-\sqrt{x^{2}+y^{2}+2 x y+16 x^{2} z}}{4 x^{2}} ; \frac{-(x+y)+\sqrt{x^{2}+y^{2}+2 x y+16 x^{2} z}}{4 x^{2}}$.
If $x=0$, then $y p=2 z$ is a linear equation with respect to p, hence
If $x=0$ and $y \neq 0$, then $p=\frac{2 z}{y}$;
If $x=0$ and $y=0$ and $z \neq 0$, then the equation does not have solutions
If $x=0$ and $y=0$ and $z=0$, then the equation has infinitely many solutions, i.e. $p=K$, where K is an arbitrary real constant.

Note that there are infinitely many solutions when two or less values of x, y, z, p are known, they should satisfy condition $z \geq \frac{x p+y p}{2}$.

