Answer on Question \#50248 - Math - Complex Analysis

1) Given:

$$
\sum_{n=0}^{\infty} \frac{2^{n}}{i^{n}}(z+\pi)^{n}
$$

Find:

the Radius of convergence of the power series

Solution:

$a_{n}=\frac{2^{n}}{i^{n}}$

$$
R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{2^{n}}{i^{n}} \cdot \frac{i^{n+1}}{2^{n+1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{2^{n} \cdot i \cdot i^{n}}{i^{n} \cdot 2 \cdot 2^{n}}\right|=\left|\frac{i}{2}\right|=\frac{1}{2}
$$

Answer: $R=\frac{1}{2}$

2) Given:

$$
f(z)=z^{2}+\frac{2}{z^{3}}-2
$$

Determine:

whether $z_{0}=\infty$ is a singularity of $f(z)$
if its singularity, classify it

Solution:

a) function $f(z)$ is not analytic at the point $z_{0}=\infty$, so $z_{0}=\infty$ is a singularity of $f(z)$
b) Function $g(z)=f\left(\frac{1}{z}\right)=\frac{1}{z^{2}}+2 z^{3}-2$ has a singularity $z=0$, which is a pole of order 2 , hence function $f(z)$ has a singularity $z_{0}=\infty$, which is a pole of order 2 . $\lim _{z \rightarrow \infty}\left(z^{2}+\frac{2}{z^{3}}-2\right)=\lim _{z \rightarrow \infty} \frac{z^{5}-2 z^{3}+2}{z^{3}}=\infty \quad \Rightarrow \quad z_{0}=\infty$ is a pole

Answer: $z_{0}=\infty$ is a singularity of $f(z), z_{0}=\infty$ is a pole.

