Answer on Question #50235 – Math - Complex Analysis

Find the value(s) of constant B such that : integral on curve for [(1)- (3z) + (2 B { z^{4} }) +(z^{6}) + (3 { z^{7} }) + (11 { z^{100} }] /[z^{5}] dz = integral on curve for [e ^ {Bz} + 2 z] / [z^{3}] dz where C is the unit circle oriented counterclockwise .

Solution

$$I_1 = \oint f_1(z) \, dz = I_2 = \oint f_2(z) \, dz$$

where
$$f_1(z) = \frac{1 - 3z + 2Bz^4 + z^6 + 3z^7 + 11z^{100}}{z^5}$$
, $f_2(z) = \frac{e^{Bz} + 2z}{z^3}$.

Both integrands have singularities at z = 0 and the value of each integral can be evaluated as $I_1 = 2\pi \iota \cdot res[f_1(z), z = 0] = I_2 = 2\pi \iota \cdot res[f_2(z), z = 0]$

We can break up the integrand $f_1(z)$ into six fractions dividing each term in the numerator by the denominator $f_1(z) = \frac{1-3z+2Bz^4+z^6+3z^7+11z^{100}}{z^5} = \frac{1}{z^5} - 3\frac{1}{z^4} + 2B\frac{1}{z} + z + 3z^2 + 11z^{95}$, we see that $f_1(z)$ has a Laurent expansion about z = 0 given by $f_1(z) = \frac{1}{z^5} - 3\frac{1}{z^4} + 2B\frac{1}{z} + z + 3z^2 + 11z^{95}$. Hence the residue is 2B (the coefficient of z^{-1}). $\oint \frac{1-3z+2Bz^4+z^6+3z^7+11z^{100}}{z^5} dz = 2\pi i \cdot res[f_1(z), z = 0] = 2\pi i c_{-1} = 2\pi i 2B$ c_{-1} -is the coefficient of the Laurent expansion about z = 0.

In a similar way by expanding $\frac{e^{Bz} + 2z}{z^3}$ as a Taylor series, we see that $f_2(z) = \frac{e^{Bz} + 2z}{z^3} = \frac{1 + Bz + B^2 z^2 / 2 + B^3 z^3 / 6 + 2z}{z^3}$ has a Laurent expansion about z = 0 given by $\frac{1}{z^3} + \frac{B+2}{z^2} + \frac{B^2}{2z} + B^3 + \dots$

So, the residue is $\frac{B^2}{2}$ (the coefficient of z^{-1}). Hence the both integrals are equal if the next condition is fulfilled: $B^2/2 = 2B \Rightarrow \begin{cases} B = 0 \\ B = 4 \end{cases}$.

Answer: $\begin{cases} B = 0 \\ B = 4 \end{cases}$.

www.AssignmentExpert.com