Answer on Question \#50235 - Math - Complex Analysis

Find the value(s) of constant B such that:
integral on curve for $\left[(1)-(3 z)+\left(2 B\left\{z^{\wedge} 4\right\}\right)+\left(z^{\wedge} 6\right)+\left(3\left\{z^{\wedge} 7\right\}\right)+\left(11\left\{z^{\wedge} 100\right\}\right] /\left[z^{\wedge} 5\right] d z=\right.$ integral on curve for $\left[e^{\wedge}\{B z\}+2 z\right] /\left[z^{\wedge} 3\right] d z$
where C is the unit circle oriented counterclockwise.

Solution

$$
I_{1}=\oint f_{1}(z) d z=I_{2}=\oint f_{2}(z) d z
$$

where $f_{1}(z)=\frac{1-3 z+2 B z^{4}+z^{6}+3 z^{7}+11 z^{100}}{z^{5}}, f_{2}(z)=\frac{e^{B z}+2 z}{z^{3}}$.
Both integrands have singularities at $z=0$ and the value of each integral can be evaluated as $I_{1}=2 \pi \imath \cdot \operatorname{res}\left[f_{1}(z), z=0\right]=I_{2}=2 \pi \imath \cdot \operatorname{res}\left[f_{2}(z), z=0\right]$

We can break up the integrand $f_{1}(z)$ into six fractions dividing each term in the numerator by the denominator $f_{1}(z)=\frac{1-3 z+2 B z^{4}+z^{6}+3 z^{7}+11 z^{100}}{z^{5}}=\frac{1}{z^{5}}-3 \frac{1}{z^{4}}+2 B \frac{1}{z}+z+3 z^{2}+11 z^{95}$, we see that $f_{1}(z)$ has a Laurent expansion about $z=0$ given by $f_{1}(z)=\frac{1}{z^{5}}-3 \frac{1}{z^{4}}+2 B \frac{1}{z}+z+3 z^{2}+11 z^{95}$. Hence the residue is $2 B$ (the coefficient of z^{-1}). $\oint \frac{1-3 z+2 B z^{4}+z^{6}+3 z^{7}+11 z^{100}}{z^{5}} d z=2 \pi \iota \cdot \operatorname{res}\left[f_{1}(z), z=0\right]=2 \pi \iota c_{-1}=2 \pi \iota 2 B$ c_{-1}-is the coefficient of the Laurent expansion about $z=0$.

In a similar way by expanding $\frac{e^{B_{z}}+2 z}{z^{3}}$ as a Taylor series, we see that $f_{2}(z)=\frac{e^{B z}+2 z}{z^{3}}=\frac{1+B z+B^{2} z^{2} / 2+B^{3} z^{3} / 6+2 z}{z^{3}}$ has a Laurent expansion about $z=0$ given by $\frac{1}{z^{3}}+\frac{B+2}{z^{2}}+\frac{B^{2}}{2 z}+B^{3}+\ldots$

So, the residue is $\frac{B^{2}}{2}$ (the coefficient of z^{-1}). Hence the both integrals are equal if the next condition is fulfilled: $B^{2} / 2=2 B \Rightarrow\left\{\begin{array}{l}B=0 \\ B=4\end{array}\right.$.

Answer: $\left\{\begin{array}{l}B=0 \\ B=4\end{array}\right.$.

