Answer on Question \#50231- Math - Complex Analysis

Let $f(z)$ be an analytic function in the annulus $0<|z|<R$ for some positive real number R ,Whose laurent series (in this annulus) is given by
$f(z)=n$ from $-\infty$ to $\left.\infty \sum\left\{(-1)^{\wedge} n /\left(n^{\wedge} 2\right)!\right]\right\} . Z^{\wedge}\left\{5 n-n^{\wedge} 2-1\right\}$
A)) What Kind of Singularity is $z=0$ for $f(z)$?
B)) Compute integral on Curve for [$\left.z^{\wedge} 24 . f(z) d z\right]$, where C is a counterclockwise simple path lying in the annulus enclosing $z=0$
C)) Calculate Res (f) in $\mathrm{z}=0$
D)) Evaluate Integral on Curve for [$\sin Z . f(z) d z]$, where $C:|z|=(R / 2)$ oriented counterclockwise

Solution

A) The function

$$
\begin{equation*}
f(z)=\sum_{n=-\infty}^{+\infty} \frac{(-1)^{n}}{\left(n^{2}\right)!} z^{5 n-n^{2}-1}=\sum_{n=-\infty}^{+\infty} \frac{(-1)^{n}}{\left(n^{2}\right)!} \frac{1}{z^{n^{2}-5 n+1}} \tag{1}
\end{equation*}
$$

has an singularity at point $z_{0}=0$, because it is not defined there, but it is defined at other points of the annulus $0<|z|<R$.

The function $f(z)$ has an essential singularity at 0 , because according to (1), $f(z)$ contains infinitely many terms with negative powers of z ($5 n-n^{2}-1<-1$ for $n<0$ and $n>5$, i.e. there exist infinitely many terms with negative power of z).
B) The function

$$
\begin{equation*}
z^{24} f(z)=z^{24} \sum_{n=-\infty}^{+\infty} \frac{(-1)^{n}}{\left(n^{2}\right)!} z^{5 n-n^{2}-1}=\sum_{n=-\infty}^{+\infty} \frac{(-1)^{n}}{\left(n^{2}\right)!} \frac{1}{z^{n^{2}-5 n-24+1}} \tag{2}
\end{equation*}
$$

has an essential singularity at point $z_{0}=0$.
We used $z^{24} z^{5 n-n^{2}-1}=z^{24+5 n-n^{2}-1}=z^{-\left(n^{2}-5 n-24+1\right)}=\frac{1}{z^{n^{2}-5 n-24+1}}$ according to properties of exponents and power functions, operations with real numbers

Coefficient c_{-1} of the term with $z^{-1}=\frac{1}{z}=\frac{1}{z^{1}}$ in (2) is called the residue of function $h(z)=z^{24} f(z)$ at point $z_{0}=0$, here point $z_{0}=0$ is finite.
(notation is the following: $\left.\operatorname{Res}_{z=0}(h)=\operatorname{Res}_{z=0}\left(z^{24} f\right)=c_{-1}\right)$.
In order to find the coefficient that correspond to values of n such that $\frac{1}{z^{n^{2}-5 n-24+1}}=\frac{1}{z^{1}}$, search for natural solutions to equation

$$
n^{2}-5 n-24+1=1
$$

which is equivalent to quadratic equation

$$
n^{2}-5 n-24=0,
$$

its discriminant is

$$
\begin{aligned}
& D=(-5)^{2}-4 \cdot(-24)=25+4 \cdot 24=25+96=121 \text {, } \\
& \text { hence } n=\frac{5 \pm 11}{2}=\frac{5-11}{2} ; \frac{5+11}{2}=\frac{-6}{2} ; \frac{16}{2}=-3 ; 8
\end{aligned}
$$

which implies that we take only natural solution $n=8$, therefore, the coefficient c_{-1} of the term of (2) with z^{-1} will be $\frac{(-1)^{n}}{\left(n^{2}\right)!}=\frac{(-1)^{8}}{\left(8^{2}\right)!}=\frac{1}{64!}$, which leads to

$$
\operatorname{Res}_{z=0}(h)=\operatorname{Res}_{z=0}\left(z^{24} f\right)=c_{-1}=\frac{1}{64!} .
$$

Coefficient c_{-1} can be computed as $c_{-1}=\frac{1}{2 \pi i} \oint_{T} \frac{h(z)}{(z-0)^{-1+1}}=\frac{1}{2 \pi i} \oint_{T} h(z) d z$, here T is a path lying in the annulus ($0<|z|<R$) enclosing $z=0$.

Thus, by residue theorem, $\oint_{T} h(z) d z=2 \pi i c_{-1}=2 \pi i \cdot \frac{1}{64!}=\frac{2 \pi i}{64!}$ (we only deal with singularity 0).
C) Coefficient a_{-1} of the term with $z^{-1}=\frac{1}{z}=\frac{1}{z^{1}}$ in (1) is called the residue of function $f(z)$ at point $z_{0}=0$, here point $z_{0}=0$ is finite.
(notation is the following: $\operatorname{Res}_{z=0}(f)=\operatorname{Res}_{z=0}(f)=a_{-1}$).
In order to find the coefficient that correspond to values of n such that $\frac{1}{z^{n^{2}-5 n+1}}=\frac{1}{z^{1}}$, search for natural solutions to equation

$$
\begin{aligned}
& n^{2}-5 n=0 \Rightarrow \\
& n(n-5)=0 \Rightarrow n=0, n=5
\end{aligned}
$$

therefore, coefficient a_{-1} equals

$$
\frac{(-1)^{0}}{\left(0^{2}\right)!}+\frac{(-1)^{5}}{\left(5^{2}\right)!}=1-\frac{1}{25!} .
$$

Point $z_{0}=0$ is finite, hence residue $\operatorname{Res}_{z=0} f=a_{-1}=1-\frac{1}{25!}$
D) Consider

$$
\begin{align*}
& g(z)=\sin z \cdot f(z)=\left(z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}+\cdots+(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!}+\cdots\right) \times \\
& \times \sum_{n=-\infty}^{+\infty} \frac{(-1)^{n}}{\left(n^{2}\right)!} z^{5 n-n^{2}-1}=\left(z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}+\cdots+(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!}+\cdots\right) \times \\
& \times \sum_{n=-\infty}^{+\infty} \frac{(-1)^{n}}{\left(n^{2}\right)!} \frac{1}{z^{n^{2}-5 n+1}} \tag{3}
\end{align*}
$$

(here we sum up terms $\sum_{n=-\infty}^{+\infty} \frac{(-1)^{n}}{\left(n^{2}\right)!} \frac{1}{z^{n^{2}-5 n+1}}$, multiplied by terms of $z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}+\cdots+(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!}+\cdots$, which lead to the sum of terms with $\frac{z^{2 k+1}}{z^{n^{2}-5 n+1}}=\frac{1}{z^{n^{2}-5 n+1-(2 k+1)}}$ (according to properties of exponents and power functions), k is an index related to terms of the series
$z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}+\cdots, n$ is an index related to terms of the series $\sum_{n=-\infty}^{+\infty} \frac{(-1)^{n}}{\left(n^{2}\right)!} z^{5 n-n^{2}-1}, k$ is a non-negative integer $)$.
In case of $g(z)=\sin z \cdot f(z), k$ is integer, equate

$$
\begin{align*}
n^{2}-5 n-(2 k+1)+1 & =1 \Longrightarrow \\
& n^{2}-5 n=2 k+1 \tag{4}
\end{align*}
$$

If $n=2 l, l$ is integer, then equation (4) does not have natural solutions, because the left-hand side (i.e. $n^{2}-5 n=4 l^{2}-10 l$) is even, but the righthand side (i.e. $2 k+1$) is odd. If $n=2 l+1, l$ is integer, then

$$
\begin{gathered}
(2 l+1)^{2}-5(2 l+1)=2 k+1 \Rightarrow \\
4 l^{2}+4 l+1-10 l-5=2 k+1 \Rightarrow \\
4 l^{2}+4 l-10 l-5=2 k \Longrightarrow \\
4 l^{2}+4 l-10 l-2 k=5
\end{gathered}
$$

If $n=2 l+1, l$ is integer, then equation (4) does not have integer solutions either, because the left-hand side (i.e. $4 l^{2}+4 l-10 l-2 k$) is even, but the right-hand side (i.e.5) is odd.

It means that on the whole equation (4) does not have integer solutions, therefore, the term of (3) with z^{-1} will not be present, hence the coefficient d_{-1} of the term with $Z^{-1}=\frac{1}{z}=\frac{1}{z^{1}}$ in (4) is zero, which leads to

$$
\operatorname{Res}_{z=0}(g)=\operatorname{Res}_{z=0}(\sin z \cdot f(z))=d_{-1}=0
$$

(point $z_{0}=0$ is finite).
Coefficient d_{-1} can be computed as $d_{-1}=\frac{1}{2 \pi i} \oint_{T} \frac{g(z)}{(z-0)^{-1+1}}=\frac{1}{2 \pi i} \oint_{T} g(z) d z$, here $T:|z|=(\mathrm{R} / 2)$.

Thus, by residue theorem, $\oint_{T} g(z) d z=2 \pi i d_{-1}=2 \pi i \cdot 0=0$ (we only deal with singularity 0).

