
 

 

Answer on Question #50231- Math – Complex Analysis 

Let f(z) be an analytic function in the annulus 0 <|z| < R for some positive real number 

R,Whose laurent series (in this annulus) is given by  

 

f(z) = n from -∞ to ∞ ∑ { (-1)^n / (n^2)! ] } . Z ^ { 5n - n^2 -1} 

A)) What Kind of Singularity is z=0 for f(z) ? 

B)) Compute integral on Curve for [ z ^ 24 . f(z) dz] ,where C is a counterclockwise simple path 

lying in the annulus enclosing z=0 

C)) Calculate Res (f) in z=0 

D)) Evaluate Integral on Curve for [ sin Z .f(z) dz] , where C : |z| = (R/2) oriented 

counterclockwise 

Solution 

A) The function 

     𝑓(𝑧) = ∑
(−1)𝑛

(𝑛2)!
𝑧5𝑛−𝑛2−1+∞

𝑛=−∞ = ∑
(−1)𝑛

(𝑛2)!

1

𝑧𝑛2−5𝑛+1
+∞
𝑛=−∞                                        (1)                                      

has an singularity at point 𝑧0 = 0, because it is not defined there, but it is defined at 

other points of the annulus 0 <|z| < R. 

The function 𝑓(𝑧) has an essential singularity at 0, because according to (1), 𝑓(𝑧) 

contains infinitely many terms with negative powers of 𝑧  ( 5𝑛 − 𝑛2 − 1 < −1 for 

𝑛 < 0 and 𝑛 > 5, i.e. there exist infinitely many terms with negative power of 𝑧). 

B) The function 

𝑧24𝑓(𝑧) = 𝑧24 ∑
(−1)𝑛

(𝑛2)!
𝑧5𝑛−𝑛2−1+∞

𝑛=−∞ = ∑
(−1)𝑛

(𝑛2)!

1

𝑧𝑛2−5𝑛−24+1
+∞
𝑛=−∞                   (2) 

has an essential singularity at point  𝑧0 = 0. 

We used 𝑧24𝑧5𝑛−𝑛2−1 = 𝑧24+5𝑛−𝑛2−1 = 𝑧−(𝑛2−5𝑛−24+1) =
1

𝑧𝑛2−5𝑛−24+1
 according to 

properties of exponents and power functions, operations with real numbers  

Coefficient 𝑐−1 of the term with 𝑧−1 =
1

𝑧
=

1

𝑧1
  in (2) is called the residue of function 

ℎ(𝑧) = 𝑧24𝑓(𝑧) at point  𝑧0 = 0, here  point 𝑧0 = 0 is finite. 

(notation is the following: 𝑅𝑒𝑠𝑧=0(ℎ) = 𝑅𝑒𝑠𝑧=0(𝑧24𝑓) = 𝑐−1).  

In order to find the coefficient that correspond to values of 𝑛 such that 

  
1

𝑧𝑛2−5𝑛−24+1
=

1

𝑧1
 , search for natural solutions to equation 

  𝑛2 − 5𝑛 − 24 + 1 = 1,  

which is equivalent to quadratic equation 



 

 

𝑛2 − 5𝑛 − 24 = 0,  

its discriminant is 

𝐷 = (−5)2 − 4 ∙ (−24) = 25 + 4 ∙ 24 = 25 + 96 = 121,  

hence 𝑛 =
5±11

2
=

5−11

2
;

5+11

2
=

−6

2
;

16

2
= −3; 8 

which implies that we take only natural solution 𝑛 = 8, therefore, the coefficient 𝑐−1 

of the term of (2) with 𝑧−1 will be  
(−1)𝑛

(𝑛2)!
=

(−1)8

(82)!
=

1

64!
 , which leads to  

  𝑅𝑒𝑠𝑧=0(ℎ) = 𝑅𝑒𝑠𝑧=0(𝑧24𝑓) = 𝑐−1 =
1

64!
 .  

Coefficient 𝑐−1 can be computed as 𝑐−1 =
1

2𝜋𝑖
∮

ℎ(𝑧)

(𝑧−0)−1+1
=

1

2𝜋𝑖𝑇
∮ ℎ(𝑧)𝑑𝑧

𝑇
, here 𝑇 is 

a  path lying in the annulus (0 <|z| < R) enclosing z=0. 

Thus, by residue theorem, ∮ ℎ(𝑧)𝑑𝑧
𝑇

= 2𝜋𝑖𝑐−1 = 2𝜋𝑖 ∙
1

64!
=

2𝜋𝑖

64!
  (we only deal with 

singularity 0). 

C) Coefficient 𝑎−1 of the term with 𝑧−1 =
1

𝑧
=

1

𝑧1
  in (1) is called the residue of  

function 𝑓(𝑧) at point  𝑧0 = 0, here  point 𝑧0 = 0 is finite. 

(notation is the following: 𝑅𝑒𝑠𝑧=0(𝑓) = 𝑅𝑒𝑠𝑧=0(𝑓) = 𝑎−1).  

In order to find the coefficient that correspond to values of 𝑛 such that  
1

𝑧𝑛2−5𝑛+1
=

1

𝑧1
 , 

search for natural solutions to equation 

           𝑛2 − 5𝑛 = 0 ⟹ 

 𝑛(𝑛 − 5) = 0 ⟹ 𝑛 = 0, 𝑛 = 5,  

therefore, coefficient  𝑎−1  equals 

  
(−1)0

(02)!
+

(−1)5

(52)!
= 1 −

1

25!
. 

Point 𝑧0 = 0 is finite, hence residue  𝑅𝑒𝑠𝑧=0𝑓 = 𝑎−1 = 1 −
1

25!
 

D) Consider 

𝑔(𝑧) = 𝑠𝑖𝑛𝑧 ∙ 𝑓(𝑧) = (𝑧 −
𝑧3

3!
+

𝑧5

5!
+ ⋯ + (−1)𝑛

𝑧2𝑛+1

(2𝑛 + 1)!
+ ⋯ ) × 

× ∑
(−1)𝑛

(𝑛2)!
𝑧5𝑛−𝑛2−1

+∞

𝑛=−∞
= (𝑧 −

𝑧3

3!
+

𝑧5

5!
+ ⋯ + (−1)𝑛

𝑧2𝑛+1

(2𝑛 + 1)!
+ ⋯ ) × 

× ∑
(−1)𝑛

(𝑛2)!

1

𝑧𝑛2−5𝑛+1
+∞
𝑛=−∞                                                                                      (3) 



 

 

(here we sum up terms ∑
(−1)𝑛

(𝑛2)!

1

𝑧𝑛2−5𝑛+1
+∞
𝑛=−∞ , multiplied by terms of 

 𝑧 −
𝑧3

3!
+

𝑧5

5!
+ ⋯ + (−1)𝑛 𝑧2𝑛+1

(2𝑛+1)!
+ ⋯, which lead to the sum of terms with 

𝑧2𝑘+1

𝑧𝑛2−5𝑛+1
=

1

𝑧𝑛2−5𝑛+1−(2𝑘+1)
  (according to properties of exponents and power 

functions), 𝑘 is an index related to terms of  the series 

 𝑧 −
𝑧3

3!
+

𝑧5

5!
+ ⋯, 𝑛 is an index related to terms of the series  

∑
(−1)𝑛

(𝑛2)!
𝑧5𝑛−𝑛2−1+∞

𝑛=−∞ , 𝑘 is a non-negative integer ). 

In case of 𝑔(𝑧) = 𝑠𝑖𝑛𝑧 ∙ 𝑓(𝑧), 𝑘 is integer, equate 

  𝑛2 − 5𝑛 − (2𝑘 + 1) + 1 = 1 ⟹  

                                           𝑛2 − 5𝑛 = 2𝑘 + 1                                                 (4)   

If  𝑛 = 2𝑙, 𝑙 is integer, then equation (4) does not have natural solutions, 

because the left-hand side (i.e. 𝑛2 − 5𝑛 = 4𝑙2 − 10𝑙)     is even, but the right-

hand side (𝑖. 𝑒. 2𝑘 + 1)    is odd . 

If  𝑛 = 2𝑙 + 1,  𝑙 is integer, then  

(2𝑙 + 1)2 − 5(2𝑙 + 1) = 2𝑘 + 1 ⟹ 

4𝑙2 + 4𝑙 + 1 − 10𝑙 − 5 = 2𝑘 + 1 ⟹ 

4𝑙2 + 4𝑙 − 10𝑙 − 5 = 2𝑘 ⟹ 

4𝑙2 + 4𝑙 − 10𝑙 − 2𝑘 = 5 

If  𝑛 = 2𝑙 + 1,  𝑙 is integer, then equation (4) does not have integer solutions 

either, because the left-hand side (𝑖. 𝑒. 4𝑙2 + 4𝑙 − 10𝑙 − 2𝑘) is even, but the 

right-hand side  (𝑖. 𝑒. 5)   is odd. 

 It means that on the whole equation (4) does not have integer solutions, therefore,  

the term of (3) with 𝑧−1 will not be present, hence  the coefficient 𝑑−1  of the term 

with  𝑧−1 =
1

𝑧
=

1

𝑧1
  in (4)  is zero, which leads to  

  𝑅𝑒𝑠𝑧=0(𝑔) = 𝑅𝑒𝑠𝑧=0(𝑠𝑖𝑛𝑧 ∙ 𝑓(𝑧)) = 𝑑−1 = 0 

 (point 𝑧0 = 0 is finite). 

Coefficient 𝑑−1 can be computed as  𝑑−1 =
1

2𝜋𝑖
∮

𝑔(𝑧)

(𝑧−0)−1+1
=

1

2𝜋𝑖𝑇
∮ 𝑔(𝑧)𝑑𝑧

𝑇
, here 

𝑇:  |z| = (R/2). 

Thus, by residue theorem, ∮ 𝑔(𝑧)𝑑𝑧
𝑇

= 2𝜋𝑖𝑑−1 = 2𝜋𝑖 ∙ 0 = 0 (we only deal with 

singularity 0). 
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